Construction of an integral group ring with trivial elements of finite order

1981 ◽  
Vol 21 (4) ◽  
pp. 501-508
Author(s):  
A. A. Bovdi
1974 ◽  
Vol 17 (1) ◽  
pp. 129-130 ◽  
Author(s):  
Gerald Losey

Let G be a group, ZG its integral group ring and U(ZG) the group of units of ZG. The elements ±g∈U(ZG), g∈G, are called the trivial units of ZG. In this note we will proveLet G be a finite group. If ZG contains a non-trivial unit of finite order then it contains infinitely many non-trivial units of finite order.In [1] S. D. Berman has shown that if G is finite then every unit of finite order in ZG is trivial if and only if G is abelian or G is the direct product of a quaternion group of order 8 and an elementary abelian 2-group.


1978 ◽  
Vol 21 (4) ◽  
pp. 491-496 ◽  
Author(s):  
Alan Williamson

Let G be a periodic group and ZG its integral group ring. The elements ±g(g∈G) are called the trivial units of ZG. In [1], S. D. Berman has shown that if G is finite, then every unit of finite order is trivial if and only if G is abelian or the direct product of a quaternion group of order 8 and an elementary abelin 2-group. By comparison, Losey in [7] has shown that if ZG contains one non-trivial unit of finite order, then it contains infinitely many.


1972 ◽  
Vol 24 (6) ◽  
pp. 1137-1138 ◽  
Author(s):  
Ian Hughes ◽  
Chou-Hsiang Wei

We denote by ZG the integral group ring of the finite group G. S.D. Berman [1] showed that every unit of finite order μ in G is trivial (i.e., μ = ±g for some g in G) if and only if either G is abelian or G is a Hamiltonian 2-group. In this note, we give a new and shorter proof for the “only if” part.


1990 ◽  
Vol 42 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Frank Röhl

In [5], Roggenkamp and Scott gave an affirmative answer to the isomorphism problem for integral group rings of finite p-groups G and H, i.e. to the question whether ZG ⥲ ZH implies G ⥲ H (in this case, G is said to be characterized by its integral group ring). Progress on the analogous question with Z replaced by the field Fp of p elements has been very little during the last couple of years; and the most far reaching result in this area in a certain sense - due to Passi and Sehgal, see [8] - may be compared to the integral case, where the group G is of nilpotency class 2.


2000 ◽  
Vol 43 (1) ◽  
pp. 60-62 ◽  
Author(s):  
Daniel R. Farkas ◽  
Peter A. Linnell

AbstractLet G be an arbitrary group and let U be a subgroup of the normalized units in ℤG. We show that if U contains G as a subgroup of finite index, then U = G. This result can be used to give an alternative proof of a recent result of Marciniak and Sehgal on units in the integral group ring of a crystallographic group.


2012 ◽  
Vol 11 (01) ◽  
pp. 1250016 ◽  
Author(s):  
VICTOR BOVDI ◽  
ALEXANDER KONOVALOV

We study the Zassenhaus conjecture for the normalized unit group of the integral group ring of the Mathieu sporadic group M24. As a consequence, for this group we give a positive answer to the question by Kimmerle about prime graphs.


2011 ◽  
Vol 10 (04) ◽  
pp. 711-725 ◽  
Author(s):  
J. Z. GONÇALVES ◽  
D. S. PASSMAN

Let ℤG be the integral group ring of the finite nonabelian group G over the ring of integers ℤ, and let * be an involution of ℤG that extends one of G. If x and y are elements of G, we investigate when pairs of the form (uk, m(x), uk, m(x*)) or (uk, m(x), uk, m(y)), formed respectively by Bass cyclic and *-symmetric Bass cyclic units, generate a free noncyclic subgroup of the unit group of ℤG.


Sign in / Sign up

Export Citation Format

Share Document