modular group
Recently Published Documents


TOTAL DOCUMENTS

657
(FIVE YEARS 70)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 7 (4) ◽  
pp. 5305-5313
Author(s):  
Guangren Sun ◽  
◽  
Zhengjun Zhao

<abstract><p>Let SL$ _n(\mathbb{Q}) $ be the set of matrices of order $ n $ over the rational numbers with determinant equal to 1. We study in this paper a subset $ \Lambda $ of SL$ _n(\mathbb{Q}) $, where a matrix $ B $ belongs to $ \Lambda $ if and only if the conjugate subgroup $ B\Gamma_q(n)B^{-1} $ of principal congruence subgroup $ \Gamma_q(n) $ of lever $ q $ is contained in modular group SL$ _n(\mathbb{Z}) $. The notion of least common denominator (LCD for convenience) of a rational matrix plays a key role in determining whether <italic>B</italic> belongs to $ \Lambda $. We show that LCD can be described by the prime decomposition of $ q $. Generally $ \Lambda $ is not a group, and not even a subsemigroup of SL$ _n(\mathbb{Q}) $. Nevertheless, for the case $ n = 2 $, we present two families of subgroups that are maximal in $ \Lambda $ in this paper.</p></abstract>


Author(s):  
Diego García-Lucas ◽  
Leo Margolis ◽  
Ángel del Río

Abstract We provide non-isomorphic finite 2-groups which have isomorphic group algebras over any field of characteristic 2, thus settling the Modular Isomorphism Problem.


Author(s):  
Frédérique Bassino ◽  
Cyril Nicaud ◽  
Pascal Weil

We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].


2021 ◽  
Vol 104 (7) ◽  
Author(s):  
Bu-Yao Qu ◽  
Xiang-Gan Liu ◽  
Ping-Tao Chen ◽  
Gui-Jun Ding

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Cai-Chang Li ◽  
Xiang-Gan Liu ◽  
Gui-Jun Ding

Abstract We propose to construct the finite modular groups from the quotient of two principal congruence subgroups as Γ(N′)/Γ(N″), and the modular group SL(2, ℤ) is ex- tended to a principal congruence subgroup Γ(N′). The original modular invariant theory is reproduced when N′ = 1. We perform a comprehensive study of $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry corresponding to N′ = 1 and N″ = 6, five types of models for lepton masses and mixing with $$ {\Gamma}_6^{\prime } $$ Γ 6 ′ modular symmetry are discussed and some example models are studied numerically. The case of N′ = 2 and N″ = 6 is considered, the finite modular group is Γ(2)/Γ(6) ≅ T′, and a benchmark model is constructed.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hanan Alolaiyan ◽  
Abdul Razaq ◽  
Awais Yousaf ◽  
Rida Zahra

This work deals with the well-known group-theoretic graphs called coset graphs for the modular group G and its applications. The group action of G on real quadratic fields forms infinite coset graphs. These graphs are made up of closed paths. When M acts on the finite field Zp, the coset graph appears through the contraction of the vertices of these infinite graphs. Thus, finite coset graphs are composed of homomorphic copies of closed paths in infinite coset graphs. In this work, we have presented a comprehensive overview of the formation of homomorphic copies.


2021 ◽  
pp. 1-29
Author(s):  
Matthew Stover

The Wiman–Edge pencil is a pencil of genus 6 curves for which the generic member has automorphism group the alternating group [Formula: see text]. There is a unique smooth member, the Wiman sextic, with automorphism group the symmetric group [Formula: see text]. Farb and Looijenga proved that the monodromy of the Wiman–Edge pencil is commensurable with the Hilbert modular group [Formula: see text]. In this note, we give a complete description of the monodromy by congruence conditions modulo 4 and 5. The congruence condition modulo 4 is new, and this answers a question of Farb–Looijenga. We also show that the smooth resolution of the Baily–Borel compactification of the locally symmetric manifold associated with the monodromy is a projective surface of general type. Lastly, we give new information about the image of the period map for the pencil.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2161
Author(s):  
Renata Macaitienė

Let F be the normalized Hecke-eigen cusp form for the full modular group and ζ(s,F) be the corresponding zeta-function. In the paper, the joint universality theorem on the approximation of a collection of analytic functions by shifts (ζ(s+ih1τ,F),⋯,ζ(s+ihrτ,F)) is proved. Here, h1,⋯,hr are algebraic numbers linearly independent over the field of rational numbers.


Sign in / Sign up

Export Citation Format

Share Document