Green's function of a plane-parallel layer in the case of incoherent anisotropic scattering

Astrophysics ◽  
1978 ◽  
Vol 14 (1) ◽  
pp. 96-108 ◽  
Author(s):  
O. V. Pikichyan
1958 ◽  
Vol 36 (2) ◽  
pp. 192-205 ◽  
Author(s):  
J. A. Steketee

In this paper a Green's function method is developed to deal with the problem of a Volterra dislocation in a semi-infinite elastic medium in such a way that the boundary surface of the medium remains free from stresses. (A Volterra dislocation is here defined as a surface across which the displacement components show a discontinuity of the type Δu = U + Ω ×r, where U and Ω are constant vectors.) It is found that the general problem requires the construction of six sets of Green's functions. The method for the construction is outlined and applied to one of the six sets, which is of the type of two double forces with moments in a plane parallel with the boundary. The displacement field thus generated is computed. Several of the results obtained are believed to be of geophysical interest, but a more detailed discussion of these applications is postponed to a further communication which is being prepared.


2005 ◽  
Vol 62 (8) ◽  
pp. 2910-2924 ◽  
Author(s):  
Yi Qin ◽  
Michael A. Box

Abstract Green’s function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green’s function has been found to be useful in land, ocean, and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green’s function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting [atmosphere–bidirectional reflectance distribution function (BRDF)] surface. A FORTRAN 95 code, Green’s function and discrete ordinate method (GDOM), has been developed to efficiently compute the Green’s function. This code also integrates with an implementation of the discrete ordinate method with several extensions and improvements. Computing complexity of the Green’s function algorithm is analyzed, and validation of the code is discussed.


1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

Sign in / Sign up

Export Citation Format

Share Document