series expansion
Recently Published Documents


TOTAL DOCUMENTS

1606
(FIVE YEARS 221)

H-INDEX

47
(FIVE YEARS 6)

Author(s):  
E. Defez ◽  
J. Ibáñez ◽  
J. Peinado ◽  
P. Alonso-Jordá ◽  
José M. Alonso

2022 ◽  
Vol 27 (1) ◽  
pp. 179-197
Author(s):  
Adolfas Dargys ◽  
Artūras Acus

Closed form expressions to calculate the exponential of a general multivector (MV) in Clifford geometric algebras (GAs) Clp;q are presented for n = p + q = 3. The obtained exponential formulas were applied to find exact GA trigonometric and hyperbolic functions of MV argument. We have verified that the presented exact formulas are in accord with series expansion of MV hyperbolic and trigonometric functions. The exponentials may be applied to solve GA differential equations, in signal and image processing, automatic control and robotics.


2022 ◽  
pp. 101552
Author(s):  
Qipin Chen ◽  
Wenrui Hao ◽  
Juncai He

Author(s):  
Xiaomei Sun ◽  
Kaixiang Yu ◽  
Anqiang Zhu

In this paper, we establish an infinite series expansion of Leray–Trudinger inequality, which is closely related with Hardy inequality and Moser Trudinger inequality. Our result extends early results obtained by Mallick and Tintarev [A. Mallick and C. Tintarev. An improved Leray-Trudinger inequality. Commun. Contemp. Math. 20 (2018), 17501034. OP 21] to the case with many logs. It should be pointed out that our result is about series expansion of Hardy inequality under the case $p=n$ , which case is not considered by Gkikas and Psaradakis in [K. T. Gkikas and G. Psaradakis. Optimal non-homogeneous improvements for the series expansion of Hardy's inequality. Commun. Contemp. Math. doi:10.1142/S0219199721500310]. However, we can't obtain the optimal form by our method.


Geophysics ◽  
2021 ◽  
pp. 1-46
Author(s):  
Tao Chen ◽  
Dikun Yang

Data interpolation is critical in the analysis of geophysical data when some data is missing or inaccessible. We propose to interpolate irregular or missing potential field data using the relation between adjacent data points inspired by the Taylor series expansion (TSE). The TSE method first finds the derivatives of a given point near the query point using data from neighboring points, and then uses the Taylor series to obtain the value at the query point. The TSE method works by extracting local features represented as derivatives from the original data for interpolation in the area of data vacancy. Compared with other interpolation methods, the TSE provides a complete description of potential field data. Specifically, the remainder in TSE can measure local fitting errors and help obtain accurate results. Implementation of the TSE method involves two critical parameters – the order of the Taylor series and the number of neighbors used in the calculation of derivatives. We have found that the first parameter must be carefully chosen to balance between the accuracy and numerical stability when data contains noise. The second parameter can help us build an over-determined system for improved robustness against noise. Methods of selecting neighbors around the given point using an azimuthally uniform distribution or the nearest-distance principle are also presented. The proposed approach is first illustrated by a synthetic gravity dataset from a single survey line, then is generalized to the case over a survey grid. In both numerical experiments, the TSE method has demonstrated an improved interpolation accuracy in comparison with the minimum curvature method. Finally we apply the TSE method to a ground gravity dataset from the Abitibi Greenstone Belt, Canada, and an airborne gravity dataset from the Vinton Dome, Louisiana, USA.


2021 ◽  
pp. 72-85
Author(s):  
L. V Stepanova

In this study coefficients of the multi-parameter Williams power series expansion for the stress field in the vicinity of the central crack in the rectangular plate and in the semi-circular notched disk under bending are obtained by the use of the finite element analysis. In SIMULIA Abaqus, the finite element analysis software, the numerical solutions for these two cracked geometries are found. The rectangular plate with the central crack has the geometry similar to the geometry used in the digital photoelasticity. Numerical simulations of the same cracked specimen as in the experimental photoelasticity method are performed. The numerical solutions obtained are utilized for the determination of the coefficients of the Williams series expansion. The higher-order coefficients are extracted from the finite element method calculations implemented in Simulia Abaqus software package and the outcomes are compared to experimental values. Determination of the coefficients of the terms of this series is performed using the least squares-based regression technique known as the over-deterministic method, for which stresses data obtained numerically in SIMULIA Abaqus software are taken as inputs. The plate with a small central crack has been considered either. This kind of the cracked specimen has been utilized for comparison of coefficients of the Williams series expansion obtained from the finite element analysis with the coefficients known from the theoretical solution based on the complex variable theory in plane elasticity. It is shown that the coefficients of the Williams series expansion match with good accuracy. The higher-order terms in the Williams series expansion for the semi-circular notch disk are found.


Sign in / Sign up

Export Citation Format

Share Document