displacement field
Recently Published Documents


TOTAL DOCUMENTS

863
(FIVE YEARS 144)

H-INDEX

47
(FIVE YEARS 6)

Author(s):  
Bo Wang ◽  
Chen Sun ◽  
Keming Zhang ◽  
Jubing Chen

Abstract As a representative type of outlier, the abnormal data in displacement measurement often inevitably occurred in full-field optical metrology and significantly affected the further evaluation, especially when calculating the strain field by differencing the displacement. In this study, an outlier removal method is proposed which can recognize and remove the abnormal data in optically measured displacement field. A iterative critical factor least squares algorithm (CFLS) is developed which distinguishes the distance between the data points and the least square plane to identify the outliers. A successive boundary point algorithm is proposed to divide the measurement domain to improve the applicability and effectiveness of the CFLS algorithm. The feasibility and precision of the proposed method are discussed in detail through simulations and experiments. Results show that the outliers are reliably recognized and the precision of the strain estimation is highly improved by using these methods.


ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 169
Author(s):  
Tommaso Tocci ◽  
Lorenzo Capponi ◽  
Roberto Marsili ◽  
Gianluca Rossi

<p>Thermoelastic stress analysis (TSA) is a non-contact measurement technique for stress distribution evaluation. A common issue related to this technique is the rigid-displacement of the specimen during the test phase, that can compromise the reliability of the measurement. For this purpose, several motion compensation techniques have been implemented over the years, but none of them is provided through a single measurement and a single sample surface conditioning. Due to this, a motion compensation technique based on Optical-Flow has been implemented, which greatly increases the strength and the effectiveness of the methodology through a single measurement and single specimen preparation. The proposed approach is based on measuring the displacement field of the specimen directly from the thermal video, through optical flow. This displacement field is then used to compensate for the specimen’s displacement on the infrared video, which will then be used for thermoelastic stress analysis. Firstly, the algorithm was validated by a comparison with synthetic videos, created ad hoc, and the quality of the motion compensation approach was evaluated on video acquired in the visible range. The research moved into infrared acquisitions, where the application of TSA gave reliable and accurate results. Finally, the quality of the stress map obtained was verified by comparison with a numerical model.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261355
Author(s):  
Qinjian Zhan ◽  
Niaz Muhammad Shahani ◽  
Zhicheng Xue ◽  
Shengqiang Li

Complex boundary conditions are the major influencing factors of coal caving law in the pseudo-inclined working face. The main purpose of this study is to analyze coal caving law of flexible shield support and then to establish the internal relations among coal caving parameters under complex boundary conditions. Firstly, the law of coal caving in different falling modes is simulated physically. Secondly, the coal caving shape, displacement field, and contact force field is simulated. Then, coal caving law and process parameters is analyzed theoretically. Finally, the test was performed in Bai-Ji Mine. The research shows that ellipsoidal ore drawing theory has universal applicability in coal drawing law analysis and parameter optimization. After the Isolated Extraction Zone and Isolated Movement Zone reach the roof, the expansion speed is marked by a short delay, and then, while expanding to the floor, two butted incomplete ellipsoids are formed. There is a time-space difference in coal caving after the support, and some coal will be mined in the next round of coal caving. There are obvious differences in the coal loosening range, displacement field, and contact force field on both sides of the long axis. When the support falls along with the bottom plate, it is more conducive to the release of coal. The test shows that the research is of great significance for optimizing the caving parameters of flexible shield support in the pseudo-inclined working face of the steep seam.


2021 ◽  
Vol 3 (1) ◽  
pp. 45-50
Author(s):  
Olena Stankevych ◽  
◽  
Nazar Stankevych ◽  

The dynamic problem of the displacement field in an elastic half-space caused by the time-steady displacement of the surfaces of the system of disc-shaped coplanar cracks is solved. The solutions are obtained by the method of boundary integral equations. The dependences of elastic displacements on the surface of the half-space on the wave number, the number of defects and the depths of their occurrence are constructed.


2021 ◽  
pp. 1-11
Author(s):  
Catalin Picu ◽  
Jacob Merson

Abstract This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.


MAUSAM ◽  
2021 ◽  
Vol 67 (3) ◽  
pp. 659-668
Author(s):  
AJIT DE ◽  
A. ROY ◽  
M. MITRA ◽  
R. K. BHATTACHARYA

The method of eigen function expansion has been used in the present study to compute synthetic or theoretical seismogram in layered elastic half-space of real earth model. Simple dislocation source model has been considered. The transverse (SH) or radial and vertical (P-SV) components of displacement field have been computed as summed modes and compared by using both exact and numerical techniques. The methods used in the study, include exact evaluation by propagator matrix approach using Reflection-Transmission coefficients as well as numerical computations using Runge-Kutta method of order 4. The specialty of the present study is to evaluate approximate displacement field for the earth models with homogeneous and / or inhomogeneous layers. The normalization technique has been used in the study to control the overflow errors. The study has an advantage to get an idea of earth structure or source model by an inverse iterative technique.  


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Atsuhisa Ota ◽  
Hee-Jong Seo ◽  
Shun Saito ◽  
Florian Beutler

Sign in / Sign up

Export Citation Format

Share Document