High-temperature exchange third virial coefficient for hard spheres via an asymptotic method for path integrals

1974 ◽  
Vol 11 (3) ◽  
pp. 207-230 ◽  
Author(s):  
Robert Nyden Hill
1993 ◽  
Vol 26 (15) ◽  
pp. 3791-3794 ◽  
Author(s):  
Takashi Norisuye ◽  
Yo Nakamura ◽  
Kazutomo Akasaka

The fifth virial coefficient of a fluid of hard spheres is a sum of 238 irreducible cluster integrals of 10 different types. The values of 5 of these types (152 integrals) are obtained analytically, the contributions of a further 4 types (85 integrals) are obtained by a com­bination of analytical and numerical integration, and 1 integral is calculated by an approximation. The result is E = (0·1093 ± 0·0007) b 4 , b = 2/3 πN A σ 3 , where σ is the diameter of a sphere. A combination of the values of 237 of the cluster integrals obtained in this paper with the value of one integral obtained independently by Katsura & Abe from a Monte Carlo calculation yields E = (0·1101 ± 0·0003) b 4 .


1987 ◽  
Vol 61 (2) ◽  
pp. 525-528 ◽  
Author(s):  
John S. Rowlinson ◽  
Donald A. McQuarrie

1998 ◽  
Vol 13 (11) ◽  
pp. 843-852 ◽  
Author(s):  
P. F. BORGES ◽  
H. BOSCHI-FILHO ◽  
C. FARINA

We show that the assumption of quasiperiodic boundary conditions (those that interpolate continuously periodic and antiperiodic conditions) in order to compute partition functions of relativistic particles in 2+1 space–time can be related with anyonic physics. In particular, in the low temperature limit, our result leads to the well-known second virial coefficient for anyons. Besides, we also obtain the high temperature limit as well as the full temperature dependence of this coefficient.


Sign in / Sign up

Export Citation Format

Share Document