Two-step solvable groups with weak minimal condition for normal subgroups

1986 ◽  
Vol 37 (3) ◽  
pp. 232-236
Author(s):  
L. A. Kurdachenko ◽  
A. V. Tushev
2020 ◽  
Vol 560 ◽  
pp. 371-382
Author(s):  
Ulderico Dardano ◽  
Fausto De Mari ◽  
Silvana Rinauro

1974 ◽  
Vol 17 (3) ◽  
pp. 305-318 ◽  
Author(s):  
H. Heineken ◽  
J. S. Wilson

It was shown by Baer in [1] that every soluble group satisfying Min-n, the minimal condition for normal subgroups, is a torsion group. Examples of non-soluble locally soluble groups satisfying Min-n have been known for some time (see McLain [2]), and these examples too are periodic. This raises the question whether all locally soluble groups with Min-n are torsion groups. We prove here that this is not the case, by establishing the existence of non-trivial locally soluble torsion-free groups satisfying Min-n. Rather than exhibiting one such group G, we give a general method for constructing examples; the reader will then be able to see that a variety of additional conditions may be imposed on G. It will follow, for instance, that G may be a Hopf group whose normal subgroups are linearly ordered by inclusion and are all complemented in G; further, that the countable groups G with these properties fall into exactly isomorphism classes. Again, there are exactly isomorphism classes of countable groups G which have hypercentral nonnilpotent Hirsch-Plotkin radical, and which at the same time are isomorphic to all their non-trivial homomorphic images.


2019 ◽  
Vol 18 (04) ◽  
pp. 1950074
Author(s):  
Xuewu Chang

The normal embedding problem of finite solvable groups into [Formula: see text]-groups was studied. It was proved that for a finite solvable group [Formula: see text], if [Formula: see text] has a special normal nilpotent Hall subgroup, then [Formula: see text] cannot be a normal subgroup of any [Formula: see text]-group; on the other hand, if [Formula: see text] has a maximal normal subgroup which is an [Formula: see text]-group, then [Formula: see text] can occur as a normal subgroup of an [Formula: see text]-group under some suitable conditions. The results generalize the normal embedding theorem on solvable minimal non-[Formula: see text]-groups to arbitrary [Formula: see text]-groups due to van der Waall, and also cover the famous counterexample given by Dade and van der Waall independently to the Dornhoff’s conjecture which states that normal subgroups of arbitrary [Formula: see text]-groups must be [Formula: see text]-groups.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.


1984 ◽  
Vol 23 (4) ◽  
pp. 303-306 ◽  
Author(s):  
A. N. Ostylovskii

2006 ◽  
Vol 13 (03) ◽  
pp. 411-420 ◽  
Author(s):  
Fausto De Mari ◽  
Francesco de Giovanni

In this paper, the structure of (generalized) soluble groups for which the set of all subnormal non-normal subgroups satisfies the minimal condition is described, taking as a model the known theory of groups in which normality is a transitive relation.


Sign in / Sign up

Export Citation Format

Share Document