THE NUMBER OF CONJUGACY CLASSES CONTAINED IN NORMAL SUBGROUPS OF SOLVABLE GROUPS

2013 ◽  
Vol 12 (05) ◽  
pp. 1250204
Author(s):  
AMIN SAEIDI ◽  
SEIRAN ZANDI

Let G be a finite group and let N be a normal subgroup of G. Assume that N is the union of ξ(N) distinct conjugacy classes of G. In this paper, we classify solvable groups G in which the set [Formula: see text] has at most three elements. We also compute the set [Formula: see text] in most cases.

2016 ◽  
Vol 94 (2) ◽  
pp. 266-272
Author(s):  
ANTONIO BELTRÁN ◽  
MARÍA JOSÉ FELIPE ◽  
CARMEN MELCHOR

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. We determine the structure of $N$ when the diameter of the graph associated to the $G$-conjugacy classes contained in $N$ is as large as possible, that is, equal to three.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1984 ◽  
Vol 27 (1) ◽  
pp. 7-9 ◽  
Author(s):  
G. Karpilovsky

In what follows, character means irreducible complex character.Let G be a finite group and let % be a character of a normal subgroup N. If χ extends to a character of G then χ is stabilised by G, but the converse is false. The aim of this paper is to prove the following theorem which gives a sufficient condition for χ to be extended to a character of G.


1963 ◽  
Vol 22 ◽  
pp. 15-32 ◽  
Author(s):  
W. F. Reynolds

Let H be a normal subgroup of a finite group G, and let ζ be an (absolutely) irreducible character of H. In [7], Clifford studied the irreducible characters X of G whose restrictions to H contain ζ as a constituent. First he reduced this question to the same question in the so-called inertial subgroup S of ζ in G, and secondly he described the situation in S in terms of certain projective characters of S/H. In section 8 of [10], Mackey generalized these results to the situation where all the characters concerned are projective.


1985 ◽  
Vol 37 (5) ◽  
pp. 934-962 ◽  
Author(s):  
Alan E. Parks

A character of a finite group G is monomial if it is induced from a linear (degree one) character of a subgroup of G. A group G is an M-group if all its complex irreducible characters (the set Irr(G)) are monomial.In [1], Dade gave an example of an M-group with a normal subgroup which is itself not an M-group. In his group G, the supersolvable residual N is an extra special 2-group and G/N is supersolvable of even order. Moreover, the prime 2 is used in such a way that no analogous construction is possible in the case that |N| or |G:N| is odd. This led Isaacs in [8] and Dade in [2] to consider the effect of certain “oddness“ hypotheses in the study of monomial characters.Our main results are in the same spirit. Although our techniques seem to require a restrictive assumption on the supersolvable residual of the groups we consider, our theorems provide more evidence that under fairly general circumstances normal subgroups of M-groups should be M-groups.


1987 ◽  
Vol 107 (1-2) ◽  
pp. 121-132 ◽  
Author(s):  
Antonio Vera López ◽  
Ma Concepción Larrea

SynopsisIn this paper, the number of conjugacy classes of π-elements (respectively non π-elements) of G is analysed in terras of the corresponding numbers of G/N and N, for each N normal subgroup of G. In particular, we generalise well-known results of P. X. Gallagher and C. H. Sah.


1971 ◽  
Vol 23 (6) ◽  
pp. 1023-1039 ◽  
Author(s):  
George Glauberman

Suppose that we are given an isomorphism ϕ between two subgroups of index p in a finite p-group P. Let N(ϕ) be the largest subgroup of P fixed by ϕ. By a result of Sims [2, Proposition 2.1], n(ϕ) is a normal subgroup of P. In [2], we showed that P/N(ϕ) has nilpotence class at most two if p = 2, and at most three if p is odd. We then applied this result to investigate certain cases of the following question. Suppose that P is contained in a finite group G and that some subgroup of index p in P is a normal subgroup of G. Let α be an automorphism of P. Then, does α fix some nonidentity normal subgroup of P that is normal in G?In this paper, we consider characteristic subgroups of P rather than normal subgroups.


1953 ◽  
Vol 5 ◽  
pp. 477-497 ◽  
Author(s):  
D. G. Higman

If there is given a subgroup 5 of a (finite) group G, we may ask what information is to be obtained about the structure of G from a knowledge of the location of S in G. Thus, for example, famed theorems of Frobenius and Burnside give criteria for the existence of a normal subgroup N of G such that G = NS and 1 = N ⋂ S, and hence in particular for the non-simplicity of G. To aid in locating S in G, and to facilitate exploitation of the transfer, we single out a descending chain of normal subgroups of S. Namely, we introduce the focal series of S in G by means of the recursive formulae


2015 ◽  
Vol 102 (1) ◽  
pp. 96-107 ◽  
Author(s):  
SILVIO DOLFI ◽  
EMANUELE PACIFICI ◽  
LUCIA SANUS

Let $G$ be a finite group and $p$ a prime. We say that a $p$-regular element $g$ of $G$ is $p$-nonvanishing if no irreducible $p$-Brauer character of $G$ takes the value $0$ on $g$. The main result of this paper shows that if $G$ is solvable and $g\in G$ is a $p$-regular element which is $p$-nonvanishing, then $g$ lies in a normal subgroup of $G$ whose $p$-length and $p^{\prime }$-length are both at most 2 (with possible exceptions for $p\leq 7$), the bound being best possible. This result is obtained through the analysis of one particular orbit condition in linear actions of solvable groups on finite vector spaces, and it generalizes (for $p>7$) some results in Dolfi and Pacifici [‘Zeros of Brauer characters and linear actions of finite groups’, J. Algebra 340 (2011), 104–113].


1969 ◽  
Vol 21 ◽  
pp. 418-429 ◽  
Author(s):  
James C. Beidleman

The theory of generalized Frattini subgroups of a finite group is continued in this paper. Several equivalent conditions are given for a proper normal subgroup H of a finite group G to be a generalized Frattini subgroup of G. One such condition on H is that K is nilpotent for each normal subgroup K of G such that K/H is nilpotent. From this result, it follows that the weakly hyper-central normal subgroups of a finite non-nilpotent group G are generalized Frattini subgroups of G.Let H be a generalized Frattini subgroup of G and let K be a subnormal subgroup of G which properly contains H. Then H is a generalized Frattini subgroup of K.Let ϕ(G) be the Frattini subgroup of G. Suppose that G/ϕ(G) is nonnilpotent, but every proper subgroup of G/ϕ(G) is nilpotent. Then ϕ(G) is the unique maximal generalized Frattini subgroup of G.


Sign in / Sign up

Export Citation Format

Share Document