Algebraic systems of quadratic forms of number fields and function fields

1989 ◽  
Vol 65 (2) ◽  
pp. 225-243 ◽  
Author(s):  
Martin Kr�skemper
2001 ◽  
pp. 512-515
Author(s):  
Ichiro Satake ◽  
Genjiro Fujisaki ◽  
Kazuya Kato ◽  
Masato Kurihara ◽  
Shoichi Nakajima

Author(s):  
J. P. Keating ◽  
Z. Rudnick ◽  
T. D. Wooley

The similarity between the density of the primes and the density of irreducible polynomials defined over a finite field of q elements was first observed by Gauss. Since then, many other analogies have been uncovered between arithmetic in number fields and in function fields defined over a finite field. Although an active area of interaction for the past half century at least, the language and techniques used in analytic number theory and in the function field setting are quite different, and this has frustrated interchanges between the two areas. This situation is currently changing, and there has been substantial progress on a number of problems stimulated by bringing together ideas from each field. We here introduce the papers published in this Theo Murphy meeting issue, where some of the recent developments are explained.


2015 ◽  
Vol 143 (7) ◽  
pp. 2841-2856 ◽  
Author(s):  
Abel Castillo ◽  
Chris Hall ◽  
Robert J. Lemke Oliver ◽  
Paul Pollack ◽  
Lola Thompson

2014 ◽  
Vol 14 (1&2) ◽  
pp. 56-90
Author(s):  
Pradeep Sarvepalli ◽  
Pawel M. Wocjan

Infrastructures are group-like objects that make their appearance in arithmetic geometry in the study of computational problems related to number fields and function fields over finite fields. The most prominent computational tasks of infrastructures are the computation of the circumference of the infrastructure and the generalized discrete logarithms. Both these problems are not known to have efficient classical algorithms for an arbitrary infrastructure. Our main contributions are polynomial time quantum algorithms for one-dimensional infrastructures that satisfy certain conditions. For instance, these conditions are always fulfilled for infrastructures obtained from number fields and function fields, both of unit rank one. Since quadratic number fields give rise to such infrastructures, this algorithm can be used to solve Pell's equation and the principal ideal problem. In this sense we generalize Hallgren's quantum algorithms for quadratic number fields, while also providing a polynomial speedup over them. Our more general approach shows that these quantum algorithms can also be applied to infrastructures obtained from complex cubic and totally complex quartic number fields. Our improved way of analyzing the performance makes it possible to show that these algorithms succeed with constant probability independent of the problem size. In contrast, the lower bound on the success probability due to Hallgren decreases as the fourth power of the logarithm of the circumference. Our analysis also shows that fewer qubits are required. We also contribute to the study of infrastructures, and show how to compute efficiently within infrastructures.


2021 ◽  
Vol 55 (3) ◽  
pp. 68-72
Author(s):  
Mawunyo Kofi Darkey-Mensah

This paper presents an adaptation of recently developed algorithms for quadratic forms over number fields in [4] to global function fields of odd characteristics. First, we present algorithm for checking if a given non-degenerate quadratic form is isotropic or hyperbolic. Next we devise a method for computing the dimension of the anisotropic part of a quadratic form. Finally we present algorithms computing two field invariants: the level and the Pythagoras number.


2011 ◽  
Vol 07 (08) ◽  
pp. 2139-2156 ◽  
Author(s):  
PHILIPPE LEBACQUE ◽  
ALEXEY ZYKIN

We prove a formula for the limit of logarithmic derivatives of zeta functions in families of global fields with an explicit error term. This can be regarded as a rather far reaching generalization of the explicit Brauer–Siegel theorem both for number fields and function fields.


2001 ◽  
pp. 606-611
Author(s):  
Ichiro Satake ◽  
Genjiro Fujisaki ◽  
Kazuya Kato ◽  
Masato Kurihara ◽  
Shoichi Nakajima

Sign in / Sign up

Export Citation Format

Share Document