On a class of selfadjoint operators in Krein space and their compact perturbations

1988 ◽  
Vol 11 (3) ◽  
pp. 351-384 ◽  
Author(s):  
Peter Jonas
1990 ◽  
Vol 42 (10) ◽  
pp. 1155-1161 ◽  
Author(s):  
T. Ya. Azizov ◽  
P. Ionas

Filomat ◽  
2018 ◽  
Vol 32 (17) ◽  
pp. 6001-6016
Author(s):  
Il An ◽  
Jaeseong Heo

In this paper, we introduce a notion of the J-kernel of a bounded linear operator on a Krein space and study the J-Fredholm theory for Krein space operators. Using J-Fredholm theory, we discuss when (a-)J-Weyl?s theorem or (a-)J-Browder?s theorem holds for bounded linear operators on a Krein space instead of a Hilbert space.


Filomat ◽  
2020 ◽  
Vol 34 (9) ◽  
pp. 3119-3129
Author(s):  
Il An ◽  
Jaeseong Heo

In this paper, we review some properties in the local spectral theory and various subclasses of decomposable operators. We prove that every Krein space selfadjoint operator having property (?) is decomposable, and clarify the relation between decomposability and property (?) for J-selfadjoint operators. We prove the equivalence of these properties for J-selfadjoint operators T and T* by using their local spectra and local spectral subspaces.


2009 ◽  
Vol 34 (12) ◽  
pp. 1529-1533 ◽  
Author(s):  
Mai-Ying ZHONG ◽  
Shuai LIU ◽  
Hui-Hong ZHAO

2009 ◽  
Vol 189 (4) ◽  
pp. 539-551
Author(s):  
N. Bebiano ◽  
H. Nakazato ◽  
A. Nata ◽  
J. da Providência

Automatica ◽  
2022 ◽  
Vol 135 ◽  
pp. 110001
Author(s):  
Maiying Zhong ◽  
Steven X. Ding ◽  
Qing-Long Han ◽  
Xiao He ◽  
Donghua Zhou

Sign in / Sign up

Export Citation Format

Share Document