On a class of regular rings that are elementary divisor rings

1973 ◽  
Vol 24 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Melvin Henriksen
2009 ◽  
Vol 08 (05) ◽  
pp. 601-615
Author(s):  
JOHN D. LAGRANGE

If {Ri}i ∈ I is a family of rings, then it is well-known that Q(Ri) = Q(Q(Ri)) and Q(∏i∈I Ri) = ∏i∈I Q(Ri), where Q(R) denotes the maximal ring of quotients of R. This paper contains an investigation of how these results generalize to the rings of quotients Qα(R) defined by ideals generated by dense subsets of cardinality less than ℵα. The special case of von Neumann regular rings is studied. Furthermore, a generalization of a theorem regarding orthogonal completions is established. Illustrative example are presented.


2011 ◽  
Vol 39 (9) ◽  
pp. 3242-3252 ◽  
Author(s):  
Najib Mahdou ◽  
Mohammed Tamekkante ◽  
Siamak Yassemi

2019 ◽  
Vol 18 (02) ◽  
pp. 1950021
Author(s):  
Tugce Pekacar Calci ◽  
Huanyin Chen

In this paper, we introduce a new notion which lies properly between strong [Formula: see text]-regularity and pseudopolarity. A ring [Formula: see text] is feckly polar if for any [Formula: see text] there exists [Formula: see text] such that [Formula: see text] Many structure theorems are proved. Further, we investigate feck polarity for triangular matrix and matrix rings. The relations among strongly [Formula: see text]-regular rings, pseudopolar rings and feckly polar rings are also obtained.


1974 ◽  
Vol 26 (6) ◽  
pp. 1380-1383 ◽  
Author(s):  
Thomas S. Shores ◽  
Roger Wiegand

Recall that a ring R (all rings considered are commutative with unit) is an elementary divisor ring (respectively, a Hermite ring) provided every matrix over R is equivalent to a diagonal matrix (respectively, a triangular matrix). Thus, every elementary divisor ring is Hermite, and it is easily seen that a Hermite ring is Bezout, that is, finitely generated ideals are principal. Examples have been given [4] to show that neither implication is reversible.


1988 ◽  
Vol 39 (4) ◽  
pp. 349-353
Author(s):  
B. V. Zabavskii
Keyword(s):  

1976 ◽  
Vol 4 (9) ◽  
pp. 811-821 ◽  
Author(s):  
Freddy Van Oystaeyen ◽  
Jan Van Geel
Keyword(s):  

1993 ◽  
Vol 21 (11) ◽  
pp. 4173-4177 ◽  
Author(s):  
Andrew B. Carson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document