ring of quotients
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 33 (3) ◽  
pp. 601-629
Author(s):  
Silvana Bazzoni ◽  
Giovanna Le Gros

Abstract We are interested in characterising the commutative rings for which a 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} provides for covers, that is when the class 𝒜 {\mathcal{A}} is a covering class. We use Hrbek’s bijective correspondence between the 1-tilting cotorsion pairs over a commutative ring R and the faithful finitely generated Gabriel topologies on R. Moreover, we use results of Bazzoni–Positselski, in particular a generalisation of Matlis equivalence and their characterisation of covering classes for 1-tilting cotorsion pairs arising from flat injective ring epimorphisms. Explicitly, if 𝒢 {\mathcal{G}} is the Gabriel topology associated to the 1-tilting cotorsion pair ( 𝒜 , 𝒯 ) {(\mathcal{A},\mathcal{T})} , and R 𝒢 {R_{\mathcal{G}}} is the ring of quotients with respect to 𝒢 {\mathcal{G}} , we show that if 𝒜 {\mathcal{A}} is covering, then 𝒢 {\mathcal{G}} is a perfect localisation (in Stenström’s sense [B. Stenström, Rings of Quotients, Springer, New York, 1975]) and the localisation R 𝒢 {R_{\mathcal{G}}} has projective dimension at most one as an R-module. Moreover, we show that 𝒜 {\mathcal{A}} is covering if and only if both the localisation R 𝒢 {R_{\mathcal{G}}} and the quotient rings R / J {R/J} are perfect rings for every J ∈ 𝒢 {J\in\mathcal{G}} . Rings satisfying the latter two conditions are called 𝒢 {\mathcal{G}} -almost perfect.


2019 ◽  
Vol 63 (1) ◽  
pp. 193-216
Author(s):  
Cheng-Kai Liu

AbstractLet R be a semiprime ring with the extended centroid C and Q the maximal right ring of quotients of R. Set [y, x]1 = [y, x] = yx − xy for x, y ∈ Q and inductively [y, x]k = [[y, x]k−1, x] for k > 1. Suppose that f : R → Q is an additive map satisfying [f(x), x]n = 0 for all x ∈ R, where n is a fixed positive integer. Then it can be shown that there exist λ ∈ C and an additive map μ : R → C such that f(x) = λx + μ(x) for all x ∈ R. This gives the affirmative answer to the unsolved problem of such functional identities initiated by Brešar in 1996.


2018 ◽  
Vol 25 (04) ◽  
pp. 681-700
Author(s):  
Basudeb Dhara ◽  
Vincenzo De Filippis

Let R be a prime ring of characteristic different from 2, Q be its maximal right ring of quotients, and C be its extended centroid. Suppose that [Formula: see text] is a non-central multilinear polynomial over C, [Formula: see text], and F, G are two b-generalized derivations of R. In this paper we describe all possible forms of F and G in the case [Formula: see text] for all [Formula: see text] in Rn.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850055
Author(s):  
Basudeb Dhara ◽  
Krishna Gopal Pradhan ◽  
Shailesh Kumar Tiwari

Let [Formula: see text] be a noncommutative prime ring with its Utumi ring of quotients [Formula: see text], [Formula: see text] the extended centroid of [Formula: see text], [Formula: see text] a generalized derivation of [Formula: see text] and [Formula: see text] a nonzero ideal of [Formula: see text]. If [Formula: see text] satisfies any one of the following conditions: (i) [Formula: see text], [Formula: see text], [Formula: see text], (ii) [Formula: see text], where [Formula: see text] is a fixed integer, then one of the following holds: (1) there exists [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (2) [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and [Formula: see text] such that [Formula: see text] for all [Formula: see text]; (3) char [Formula: see text], [Formula: see text] satisfies [Formula: see text] and there exist [Formula: see text] and an outer derivation [Formula: see text] of [Formula: see text] such that [Formula: see text] for all [Formula: see text].


2018 ◽  
Vol 55 (2) ◽  
pp. 270-279 ◽  
Author(s):  
Najib Mahdou ◽  
Moutu Abdou Salam Moutui

A ring R has the (A)-property (resp., strong (A)-property) if every finitely generated ideal of R consisting entirely of zero divisors (resp., every finitely generated ideal of R generated by a finite number of zero-divisors elements of R) has a nonzero annihilator. The class of commutative rings with property (A) is quite large; for example, Noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose total ring of quotients are von Neumann regular. Let f : A → B be a ring homomorphism and J be an ideal of B. In this paper, we investigate when the (A)-property and strong (A)-property are satisfied by the amalgamation of rings denoted by A ⋈fJ, introduced by D'Anna, Finocchiaro and Fontana in [3]. Our aim is to construct new original classes of (A)-rings that are not strong (A)-rings, (A)-rings that are not Noetherian and (A)-rings whose total ring of quotients are not Von Neumann regular rings.


2017 ◽  
Vol 60 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Münevver Pınar Eroglu ◽  
Nurcan Argaç

AbstractLet R be a prime ring with extended centroid C, Q maximal right ring of quotients of R, RC central closure of R such that dim C(RC) > , ƒ (X1, . . . , Xn) a multilinear polynomial over C that is not central-valued on R, and f (R) the set of all evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R. Suppose that G is a nonzero generalized derivation of R such that G2(u)u ∈ C for all u ∈ ƒ(R).


2017 ◽  
Vol 103 (3) ◽  
pp. 341-356 ◽  
Author(s):  
LÁSZLÓ FUCHS ◽  
SANG BUM LEE

Our main purpose is to extend several results of interest that have been proved for modules over integral domains to modules over arbitrary commutative rings $R$ with identity. The classical ring of quotients $Q$ of $R$ will play the role of the field of quotients when zero-divisors are present. After discussing torsion-freeness and divisibility (Sections 2–3), we study Matlis-cotorsion modules and their roles in two category equivalences (Sections 4–5). These equivalences are established via the same functors as in the domain case, but instead of injective direct sums $\oplus Q$ one has to take the full subcategory of $Q$-modules into consideration. Finally, we prove results on Matlis rings, i.e. on rings for which $Q$ has projective dimension $1$ (Theorem 6.4).


Sign in / Sign up

Export Citation Format

Share Document