Onp-groups with odd order automorphism groups

1973 ◽  
Vol 24 (1) ◽  
pp. 465-471 ◽  
Author(s):  
Hermann Heineken ◽  
Hans Liebeck
2010 ◽  
Vol 13 (2) ◽  
Author(s):  
Peter Hegarty ◽  
Desmond MacHale

2010 ◽  
Vol 39 (1) ◽  
pp. 199-208
Author(s):  
M. John Curran ◽  
Russell J. Higgs

Author(s):  
E. C. Weinberg

AbstractBy using the concept of tame embeddings of chains, a characterization is given of the subobjects of the lattice-ordered groups of order-automorphisms of the chains of rational and real numbers.


2020 ◽  
Vol 23 (6) ◽  
pp. 1017-1037
Author(s):  
Hong Ci Liao ◽  
Jing Jian Li ◽  
Zai Ping Lu

AbstractA graph is edge-transitive if its automorphism group acts transitively on the edge set. In this paper, we investigate the automorphism groups of edge-transitive graphs of odd order and twice prime valency. Let {\varGamma} be a connected graph of odd order and twice prime valency, and let G be a subgroup of the automorphism group of {\varGamma}. In the case where G acts transitively on the edge set and quasiprimitively on the vertex set of {\varGamma}, we prove that either G is almost simple, or G is a primitive group of affine type. If further G is an almost simple primitive group, then, with two exceptions, the socle of G acts transitively on the edge set of {\varGamma}.


10.37236/1516 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
L. Babai ◽  
P. J. Cameron

Two tournaments $T_1$ and $T_2$ on the same vertex set $X$ are said to be switching equivalent if $X$ has a subset $Y$ such that $T_2$ arises from $T_1$ by switching all arcs between $Y$ and its complement $X\setminus Y$. The main result of this paper is a characterisation of the abstract finite groups which are full automorphism groups of switching classes of tournaments: they are those whose Sylow 2-subgroups are cyclic or dihedral. Moreover, if $G$ is such a group, then there is a switching class $C$, with Aut$(C)\cong G$, such that every subgroup of $G$ of odd order is the full automorphism group of some tournament in $C$. Unlike previous results of this type, we do not give an explicit construction, but only an existence proof. The proof follows as a special case of a result on the full automorphism group of random $G$-invariant digraphs selected from a certain class of probability distributions. We also show that a permutation group $G$, acting on a set $X$, is contained in the automorphism group of some switching class of tournaments with vertex set $X$ if and only if the Sylow 2-subgroups of $G$ are cyclic or dihedral and act semiregularly on $X$. Applying this result to individual permutations leads to an enumeration of switching classes, of switching classes admitting odd permutations, and of tournaments in a switching class. We conclude by remarking that both the class of switching classes of finite tournaments, and the class of "local orders" (that is, tournaments switching-equivalent to linear orders), give rise to countably infinite structures with interesting automorphism groups (by a theorem of Fraïssé).


1996 ◽  
Vol 24 (8) ◽  
pp. 2707-2719
Author(s):  
Gemma Parmeggiani ◽  
G. Zacher
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document