Limit theorems for sums of independent random variables defined on a nonrecurrent random walk

1982 ◽  
Vol 20 (3) ◽  
pp. 2130-2137
Author(s):  
A. N. Borodin

1967 ◽  
Vol 4 (2) ◽  
pp. 402-405 ◽  
Author(s):  
H. D. Miller

Let X(t) be the position at time t of a particle undergoing a simple symmetrical random walk in continuous time, i.e. the particle starts at the origin at time t = 0 and at times T1, T1 + T2, … it undergoes jumps ξ1, ξ2, …, where the time intervals T1, T2, … between successive jumps are mutually independent random variables each following the exponential density e–t while the jumps, which are independent of the τi, are mutually independent random variables with the distribution . The process X(t) is clearly a Markov process whose state space is the set of all integers.





Sign in / Sign up

Export Citation Format

Share Document