Recombinants are isolated at high frequency following in vivo mixed ocular infection with two avirulent herpes simplex virus type 1 strains

1995 ◽  
Vol 140 (2) ◽  
pp. 231-244 ◽  
Author(s):  
R. L. Kintner ◽  
R. W. Allan ◽  
C. R. Brandt
2013 ◽  
Vol 54 (2) ◽  
pp. 1070 ◽  
Author(s):  
Gilbert G. Jose ◽  
Inna V. Larsen ◽  
Joshua Gauger ◽  
Erica Carballo ◽  
Rebecca Stern ◽  
...  

1996 ◽  
Vol 40 (5) ◽  
pp. 1078-1084 ◽  
Author(s):  
C R Brandt ◽  
B Spencer ◽  
P Imesch ◽  
M Garneau ◽  
R Déziel

The ribonucleotide reductase (RR) of herpes simplex virus type 1 (HSV-1) is an important virulence factor, being required for neurovirulence, ocular virulence, and reactivation from latency. The RR activity requires the association of two distinct homodimeric subunits, and the association of the subunits is inhibited in the presence of a peptide homologous to the carboxy terminus of the small subunit. A structural analog of the inhibitory peptide (BILD 1263) has been shown to inhibit the replication of HSV-1 at micromolar concentrations in vitro. We used a mouse model of HSV-1 ocular infection to determine the in vivo efficacy of topical BILD 1263. Treatment of HSV-1 KOS-infected mice resulted in significant reductions in the severity and incidence of stromal keratitis and corneal neovascularization. At higher concentrations (5%) BILD 1263 reduced the severity but not the incidence of blepharitis. Treatment with 5% BILD 1263 also reduced viral shedding from the cornea by 10- to 14-fold (P < 0.001). In uninfected mice treated with 5% BILD 1263, we found no evidence of corneal epithelial damage, conjunctivitis, or blepharitis, and histopathological studies revealed no changes in the corneas of these mice. These results show that the peptidomimetic RR inhibitor BILD 1263 is effective in preventing disease, has an antiviral effect in vivo, and has little or no toxicity.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


1991 ◽  
Vol 65 (12) ◽  
pp. 6989-6993 ◽  
Author(s):  
M D Trousdale ◽  
I Steiner ◽  
J G Spivack ◽  
S L Deshmane ◽  
S M Brown ◽  
...  

2013 ◽  
Vol 54 (9) ◽  
pp. 6373 ◽  
Author(s):  
Paul J. Park ◽  
Thessicar E. Antoine ◽  
Asim V. Farooq ◽  
Tibor Valyi-Nagy ◽  
Deepak Shukla

1981 ◽  
Vol 1 (8) ◽  
pp. 743-752
Author(s):  
R M Sandri-Goldin ◽  
A L Goldin ◽  
M Levine ◽  
J C Glorioso

The protoplast fusion technique of Schaffner (W. Schaffner, Proc. Natl. Acad. Sci. U.S.A. 77:2163-2167, 1980) has been adapted to introduce cloned herpes simplex virus genes into cultured mammalian cells. The technique involves digesting bacterial cell walls with lysozyme to produce protoplasts and then fusing the protoplasts to mammalian cells by treatment with polyethylene glycol. For monitoring transfer, protoplasts were labeled with the fluorescent dye fluorescein isothiocyanate before fusion. After fusion, greater than 50% of the mammalian cells were fluorescent, demonstrating that bacterial material was transferred with high frequency. Transfer of plasmid pBR325 occurred at frequencies of 1 to 2%, as measured by in situ hybridization. Fusion transfer of a chimeric plasmid consisting of the herpes simplex virus type 1 (strain KOS) EcoRI fragment F in pBR325 resulted in expression of some viral genomic sequences in about 5% of the mammalian cells, as detected by indirect immunofluorescence. One Ltk- cell in 300 to 500 was transformed to the TK+ phenotype after fusion with protoplasts carrying the chimeric plasmid pX1, which consists of pBR322 and the BamHI fragment coding for the herpes simplex virus type 1 thymidine kinase gene.


1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


2001 ◽  
Vol 75 (5) ◽  
pp. 2368-2376 ◽  
Author(s):  
Wen-Fang Cheng ◽  
Chien-Fu Hung ◽  
Chee-Yin Chai ◽  
Keng-Fu Hsu ◽  
Liangmai He ◽  
...  

ABSTRACT Recently, self-replicating and self-limiting RNA vaccines (RNA replicons) have emerged as an important form of nucleic acid vaccines. Self-replicating RNA eventually causes lysis of transfected cells and does not raise the concern associated with naked DNA vaccines of integration into the host genome. This is particularly important for development of vaccines targeting proteins that are potentially oncogenic. However, the potency of RNA replicons is significantly limited by their lack of intrinsic ability to spread in vivo. The herpes simplex virus type 1 protein VP22 has demonstrated the remarkable property of intercellular transport and provides the opportunity to enhance RNA replicon vaccine potency. We therefore created a novel fusion of VP22 with a model tumor antigen, human papillomavirus type 16 E7, in a Sindbis virus RNA replicon vector. The linkage of VP22 with E7 resulted in a significant enhancement of E7-specific CD8+ T-cell activities in vaccinated mice and converted a less effective RNA replicon vaccine into one with significant potency against E7-expressing tumors. These results indicate that fusion of VP22 to an antigen gene may greatly enhance the potency of RNA replicon vaccines.


Sign in / Sign up

Export Citation Format

Share Document