The automorphism group of the moduli space of semi stable vector bundles

1995 ◽  
Vol 302 (1) ◽  
pp. 225-268 ◽  
Author(s):  
Alexis Kouvidakis ◽  
Tony Pantev
2005 ◽  
Vol 16 (10) ◽  
pp. 1081-1118
Author(s):  
D. ARCARA

We generalize Bertram's work on rank two vector bundles to an irreducible projective nodal curve C. We use the natural rational map [Formula: see text] defined by [Formula: see text] to study a compactification [Formula: see text] of the moduli space [Formula: see text] of semi-stable vector bundles of rank 2 and determinant L on C. In particular, we resolve the indeterminancy of ϕL in the case deg L = 3,4 via a sequence of three blow-ups with smooth centers.


1998 ◽  
Vol 150 ◽  
pp. 85-94 ◽  
Author(s):  
Hoil Kim

Abstract.We show that the image of the moduli space of stable bundles on an Enriques surface by the pull back map is a Lagrangian subvariety in the moduli space of stable bundles, which is a symplectic variety, on the covering K3 surface. We also describe singularities and some other features of it.


2009 ◽  
Vol 347 (1) ◽  
pp. 201-233 ◽  
Author(s):  
Indranil Biswas ◽  
Johannes Huisman ◽  
Jacques Hurtubise

2016 ◽  
Vol 59 (4) ◽  
pp. 865-877
Author(s):  
Sarbeswar Pal

AbstractLet X be a smooth projective curve of arbitrary genus g > 3 over the complex numbers. In this short note we will show that the moduli space of rank 2 stable vector bundles with determinant isomorphic to Lx , where Lx denotes the line bundle corresponding to a point x ∊ X, is isomorphic to a certain variety of lines in the moduli space of S-equivalence classes of semistable bundles of rank 2 with trivial determinant.


Author(s):  
Fabian Reede ◽  
Ziyu Zhang

AbstractLet X be a projective K3 surfaces. In two examples where there exists a fine moduli space M of stable vector bundles on X, isomorphic to a Hilbert scheme of points, we prove that the universal family $${\mathcal {E}}$$ E on $$X\times M$$ X × M can be understood as a complete flat family of stable vector bundles on M parametrized by X, which identifies X with a smooth connected component of some moduli space of stable sheaves on M.


Author(s):  
Carolina Araujo ◽  
Thiago Fassarella ◽  
Inder Kaur ◽  
Alex Massarenti

AbstractFix $n\geq 5$ general points $p_1, \dots , p_n\in{\mathbb{P}}^1$ and a weight vector ${\mathcal{A}} = (a_{1}, \dots , a_{n})$ of real numbers $0 \leq a_{i} \leq 1$. Consider the moduli space $\mathcal{M}_{{\mathcal{A}}}$ parametrizing rank two parabolic vector bundles with trivial determinant on $\big ({\mathbb{P}}^1, p_1,\dots , p_n\big )$ that are semistable with respect to ${\mathcal{A}}$. Under some conditions on the weights, we determine and give a modular interpretation for the automorphism group of the moduli space $\mathcal{M}_{{\mathcal{A}}}$. It is isomorphic to $\left (\frac{\mathbb{Z}}{2\mathbb{Z}}\right )^{k}$ for some $k\in \{0,\dots , n-1\}$ and is generated by admissible elementary transformations of parabolic vector bundles. The largest of these automorphism groups, with $k=n-1$, occurs for the central weight ${\mathcal{A}}_{F}= \left (\frac{1}{2},\dots ,\frac{1}{2}\right )$. The corresponding moduli space ${\mathcal M}_{{\mathcal{A}}_F}$ is a Fano variety of dimension $n-3$, which is smooth if $n$ is odd, and has isolated singularities if $n$ is even.


2007 ◽  
Vol 50 (3) ◽  
pp. 427-433
Author(s):  
Israel Moreno Mejía

AbstractLet X be a smooth complex projective curve of genus g ≥ 1. Let ξ ∈ J1(X) be a line bundle on X of degree 1. LetW = Ext1(ξn, ξ–1) be the space of extensions of ξn by ξ–1. There is a rational map Dξ : G(n,W) → SUX(n + 1), where G(n,W) is the Grassmannian variety of n-linear subspaces of W and SUX(n + 1) is the moduli space of rank n + 1 semi-stable vector bundles on X with trivial determinant. We prove that if n = 2, then Dξ is everywhere defined and is injective.


2010 ◽  
Vol 21 (04) ◽  
pp. 497-522 ◽  
Author(s):  
INDRANIL BISWAS ◽  
MAINAK PODDAR

Let X be a compact connected Riemann surface of genus at least two. Let r be a prime number and ξ → X a holomorphic line bundle such that r is not a divisor of degree ξ. Let [Formula: see text] denote the moduli space of stable vector bundles over X of rank r and determinant ξ. By Γ we will denote the group of line bundles L over X such that L⊗r is trivial. This group Γ acts on [Formula: see text] by the rule (E, L) ↦ E ⊗ L. We compute the Chen–Ruan cohomology of the corresponding orbifold.


2002 ◽  
Vol 165 ◽  
pp. 43-69 ◽  
Author(s):  
Laura Costa ◽  
Rosa M. Miro-Ŕoig

Let X be a smooth rational surface. In this paper, we prove the rationality of the moduli space MX,L(2; c1; c2) of rank two L-stable vector bundles E on X with det (E) = c1 ∈ Pic(X) and c2(E) = c2 ≫ 0.


2004 ◽  
Vol 15 (01) ◽  
pp. 13-45 ◽  
Author(s):  
ANA-MARIA CASTRAVET

Let C be a smooth projective complex curve of genus g≥2 and let M be the moduli space of rank 2, stable vector bundles on C, with fixed determinant of degree 1. For any k≥1, we find all the irreducible components of the space of rational curves on M, of degree k. In particular, we find the maximal rationally connected fibrations of these components. We prove that there is a one-to-one correspondence between moduli spaces of rational curves on M and moduli spaces of rank 2 vector bundles on ℙ1×C.


Sign in / Sign up

Export Citation Format

Share Document