stable bundles
Recently Published Documents


TOTAL DOCUMENTS

153
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 0)

2021 ◽  
pp. 1-14
Author(s):  
GRACIELA REYES-AHUMADA ◽  
L. ROA-LEGUIZAMÓN ◽  
H. TORRES-LÓPEZ

Abstract. Let π : X → C be a fibration with integral fibers over a curve C and consider a polarization H on the surface X. Let E be a stable vector bundle of rank 2 on C. We prove that the pullback π*(E) is a H-stable bundle over X. This result allows us to relate the corresponding moduli spaces of stable bundles $${{\mathcal M}_C}(2,d)$$ and $${{\mathcal M}_{X,H}}(2,df,0)$$ through an injective morphism. We study the induced morphism at the level of Brill–Noether loci to construct examples of Brill–Noether loci on fibered surfaces. Results concerning the emptiness of Brill–Noether loci follow as a consequence of a generalization of Clifford’s Theorem for rank two bundles on surfaces.



Author(s):  
Peter Newstead ◽  
Montserrat Teixidor i Bigas

Abstract It is well known that there are no stable bundles of rank greater than 1 on the projective line. In this paper, our main purpose is to study the existence problem for stable coherent systems on the projective line when the number of sections is larger than the rank. We include a review of known results, mostly for a small number of sections.



2019 ◽  
Vol 31 (6) ◽  
pp. 1395-1415
Author(s):  
Daniel A. Ramras ◽  
Bernardo Villarreal

AbstractCommutative K-theory, a cohomology theory built from spaces of commuting matrices, has been explored in recent work of Adem, Gómez, Gritschacher, Lind and Tillman. In this article, we use unstable methods to construct explicit representatives for the real commutative K-theory classes on surfaces. These classes arise from commutative {O(2)}-valued cocycles and are analyzed via the point-wise inversion operation on commutative cocycles.



2019 ◽  
Vol 156 ◽  
pp. 102793
Author(s):  
Souradeep Majumder ◽  
Ronnie Sebastian
Keyword(s):  


2019 ◽  
Vol 373 (1) ◽  
pp. 551-596 ◽  
Author(s):  
Takuro Mochizuki
Keyword(s):  


2019 ◽  
Vol 71 (03) ◽  
pp. 683-715 ◽  
Author(s):  
Christopher W. Scaduto ◽  
Matthew Stoffregen

AbstractWe compute cup-product pairings in the integral cohomology ring of the moduli space of rank two stable bundles with odd determinant over a Riemann surface using methods of Zagier. The resulting formula is related to a generating function for certain skew Schur polynomials. As an application, we compute the nilpotency degree of a distinguished degree two generator in the mod two cohomology ring. We then give descriptions of the mod two cohomology rings in low genus, and describe the subrings invariant under the mapping-class group action.



2018 ◽  
Vol 2020 (23) ◽  
pp. 9336-9369
Author(s):  
Indranil Biswas ◽  
Vamsi Pritham Pingali

Abstract We introduce a notion of admissible Hermitian metrics on parabolic bundles and define positivity properties for the same. We develop Chern–Weil theory for parabolic bundles and prove that our metric notions coincide with the already existing algebro-geometric versions of parabolic Chern classes. We also formulate a Griffiths conjecture in the parabolic setting and prove some results that provide evidence in its favor for certain kinds of parabolic bundles. For these kinds of parabolic structures, we prove that the conjecture holds on Riemann surfaces. We also prove that a Berndtsson-type result holds and that there are metrics on stable bundles over surfaces whose Schur forms are positive.



2018 ◽  
Vol 15 (05) ◽  
pp. 1850081
Author(s):  
Suratno Basu ◽  
Indranil Biswas ◽  
Krishanu Dan

Given a compact Riemann surface [Formula: see text] and a moduli space [Formula: see text] of parabolic stable bundles on it of fixed determinant of complete parabolic flags, we prove that the Poincaré parabolic bundle on [Formula: see text] is parabolic stable with respect to a natural polarization on [Formula: see text].



Sign in / Sign up

Export Citation Format

Share Document