The centre of a quantum affine algebra at a root of unity

1994 ◽  
Vol 44 (11-12) ◽  
pp. 1091-1100
Author(s):  
Jens -Ulrik Holger Petersen
2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Anne-Sophie Gleitz

International audience Shapiro and Chekhov (2011) have introduced the notion of <i>generalised cluster algebra</i>; we focus on an example in type $C_n$. On the other hand, Chari and Pressley (1997), as well as Frenkel and Mukhin (2002), have studied the <i>restricted integral form</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ of a quantum affine algebra $U_q(\widehat{\mathfrak{g}})$ where $q=ε$ is a root of unity. Our main result states that the Grothendieck ring of a tensor subcategory $C_{ε^\mathbb{z}}$ of representations of $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ is a generalised cluster algebra of type $C_{l−1}$, where $l$ is the order of $ε^2$. We also state a conjecture for $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$, and sketch a proof for $l=2$. Shapiro et Chekhov (2011) ont introduit la notion d'<i>algèbre amassée généralisée</i>; nous étudions un exemple en type $C_n$. Par ailleurs, Chari et Pressley (1997), ainsi que Frenkel et Mukhin (2002), ont étudié la <i>forme entière restreinte</i> $U^{\mathtt{res}}_ε (\widehat{\mathfrak{g}})$ d'une algèbre affine quantique $U_q(\widehat{\mathfrak{g}})$ où $q=ε$ est une racine de l'unité. Notre résultat principal affirme que l'anneau de Grothendieck d'une sous-catégorie tensorielle $C_{ε^\mathbb{z}}$ de représentations de $U^{\mathtt{res}}_ε (L\mathfrak{sl}_2)$ est une algèbre amassée généralisée de type $C_{l−1}$, où $l$ est l'ordre de $ε^2$. Nous conjecturons une propriété similaire pour $U^{\mathtt{res}}_ε (L\mathfrak{sl}_3)$ et donnons un aperçu de la preuve pour $l=2$.


1994 ◽  
Vol 09 (14) ◽  
pp. 1253-1265 ◽  
Author(s):  
HITOSHI KONNO

Using free field representation of quantum affine algebra [Formula: see text], we investigate the structure of the Fock modules over [Formula: see text]. The analysis is based on a q-analog of the BRST formalism given by Bernard and Felder in the affine Kac-Moody algebra [Formula: see text]. We give an explicit construction of the singular vectors using the BRST charge. By the same cohomology analysis as the classical case (q=1), we obtain the irreducible highest weight representation space as a non-trivial cohomology group. This enables us to calculate a trace of the q-vertex operators over this space.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Atsuo Kuniba ◽  
Masato Okado

Abstract A trick to obtain a solution to the set-theoretical reflection equation from a known one to the Yang–Baxter equation is applied to crystals and geometric crystals associated to the quantum affine algebra of type $A^{(1)}_{n-1}$.


2007 ◽  
Vol 35 (7) ◽  
pp. 2140-2159 ◽  
Author(s):  
Darren Funk-Neubauer

1999 ◽  
Vol 556 (3) ◽  
pp. 485-504 ◽  
Author(s):  
Bo-Yu Hou ◽  
Wen-Li Yang ◽  
Yao-Zhong Zhang

Sign in / Sign up

Export Citation Format

Share Document