Epis in categories of convergence spaces

1993 ◽  
Vol 61 (3-4) ◽  
pp. 195-201 ◽  
Author(s):  
D. Dikranjan ◽  
E. Giuli
Keyword(s):  



1987 ◽  
Vol 10 (2) ◽  
pp. 209-216
Author(s):  
D. C. Kent ◽  
Reino Vainio

A Cauchy structure and a preorder on the same set are said to be compatible if both arise from the same quasi-uniform convergence structure onX. Howover, there are two natural ways to derive the former structures from the latter, leading to “strong” and “weak” notions of order compatibility for Cauchy spaces. These in turn lead to characterizations of strong and weak order compatibility for convergence spaces.



1967 ◽  
Vol 17 (2) ◽  
pp. 232-247
Author(s):  
Václav Koutník


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Yang ◽  
Sheng-Gang Li ◽  
William Zhu ◽  
Xiao-Fei Yang ◽  
Ahmed Mostafa Khalil

An L , M -fuzzy topological convergence structure on a set X is a mapping which defines a degree in M for any L -filter (of crisp degree) on X to be convergent to a molecule in L X . By means of L , M -fuzzy topological neighborhood operators, we show that the category of L , M -fuzzy topological convergence spaces is isomorphic to the category of L , M -fuzzy topological spaces. Moreover, two characterizations of L -topological spaces are presented and the relationship with other convergence spaces is concretely constructed.



1968 ◽  
Vol 18 (4) ◽  
pp. 569-588
Author(s):  
Karel Wichterle
Keyword(s):  




2021 ◽  
Author(s):  
Bin Pang ◽  
Lin Zhang

Abstract In this paper, we first construct the function space of ( L,M )-fuzzy Q-convergence spaces to show the Cartesian-closedness of the category ( L,M )- QC of ( L,M )-fuzzy Q-convergence spaces. Secondly, we introduce several subcategories of ( L,M )- QC , including the category ( L,M )- KQC of ( L,M )-fuzzy Kent Q-convergence spaces, the category ( L,M )- LQC of ( L,M )-fuzzy Q-limit spaces and the category ( L,M )- PQC of ( L,M )-fuzzy pretopological Q-convergence spaces, and investigate their relationships.



2017 ◽  
Vol 321 ◽  
pp. 55-72 ◽  
Author(s):  
Bin Pang ◽  
Yi Zhao




Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 685
Author(s):  
Qiu Jin ◽  
Lingqiang Li ◽  
Jing Jiang

Fischer diagonal condition plays an important role in convergence space since it precisely ensures a convergence space to be a topological space. Generally, Fischer diagonal condition can be represented equivalently both by Kowalsky compression operator and Gähler compression operator. ⊤-convergence spaces are fundamental fuzzy extensions of convergence spaces. Quite recently, by extending Gähler compression operator to fuzzy case, Fang and Yue proposed a fuzzy counterpart of Fischer diagonal condition, and proved that ⊤-convergence space with their Fischer diagonal condition just characterizes strong L-topology—a type of fuzzy topology. In this paper, by extending the Kowalsky compression operator, we present a fuzzy counterpart of Fischer diagonal condition, and verify that a ⊤-convergence space with our Fischer diagonal condition precisely characterizes topological generated L-topology—a type of fuzzy topology. Hence, although the crisp Fischer diagonal conditions based on the Kowalsky compression operator and the on Gähler compression operator are equivalent, their fuzzy counterparts are not equivalent since they describe different types of fuzzy topologies. This indicates that the fuzzy topology (convergence) is more complex and varied than the crisp topology (convergence).



Sign in / Sign up

Export Citation Format

Share Document