In this paper, we introduce the class of soft semi ω-open sets of a soft topological space (X,τ,A), using soft ω-open sets. We show that the class of soft semi ω-open sets contains both the soft topology τω and the class of soft semi-open sets. Additionally, we define soft semi ω-closed sets as the class of soft complements of soft semi ω-open sets. We present here a study of the properties of soft semi ω-open sets, especially in (X,τ,A) and (X,τω,A). In particular, we prove that the class of soft semi ω-open sets is closed under arbitrary soft union but not closed under finite soft intersections; we also study the correspondence between the soft topology of soft semi ω-open sets of a soft topological space and their generated topological spaces and vice versa. In addition to these, we introduce the soft semi ω-interior and soft semi ω-closure operators via soft semi ω-open and soft semi ω-closed sets. We prove several equations regarding these two new soft operators. In particular, we prove that these operators can be calculated using other usual soft operators in both of (X,τ,A) and (X,τω,A), and some equations focus on soft anti-locally countable soft topological spaces.