Properties of pseudo-holomorphic curves in symplectisations II: Embedding controls and algebraic invariants

1995 ◽  
Vol 5 (2) ◽  
pp. 270-328 ◽  
Author(s):  
H. Hofer ◽  
K. Wysocki ◽  
E. Zehnder
2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.


1981 ◽  
Vol 33 (5) ◽  
pp. 1205-1231 ◽  
Author(s):  
Lawrence A. Fialkow

Let and denote infinite dimensional Hilbert spaces and let denote the space of all bounded linear operators from to . For A in and B in , let τAB denote the operator on defined by τAB(X) = AX – XB. The purpose of this note is to characterize the semi-Fredholm domain of τAB (Corollary 3.16). Section 3 also contains formulas for ind(τAB – λ). These results depend in part on a decomposition theorem for Hilbert space operators corresponding to certain “singular points” of the semi-Fredholm domain (Theorem 2.2). Section 4 contains a particularly simple formula for ind(τAB – λ) (in terms of spectral and algebraic invariants of A and B) for the case when τAB – λ is Fredholm (Theorem 4.2). This result is used to prove that (τBA) = –ind(τAB) (Corollary 4.3). We also prove that when A and B are bi-quasi-triangular, then the semi-Fredholm domain of τAB contains no points corresponding to nonzero indices.


2008 ◽  
Vol 53 (8) ◽  
pp. 797-802 ◽  
Author(s):  
Matthew Dulock ◽  
Min Ru

2018 ◽  
Vol 111 (4) ◽  
pp. 379-388 ◽  
Author(s):  
Michele Giacomini

Abstract We prove a hyperbolic analogue of the Bloch–Ochiai theorem about the Zariski closure of holomorphic curves in abelian varieties. We consider the case of non compact Shimura varieties completing the proof of the result for all Shimura varieties. The statement which we consider here was first formulated and proven by Ullmo and Yafaev for compact Shimura varieties.


Sign in / Sign up

Export Citation Format

Share Document