Quadratic convergence in interval arithmetic, part II

1972 ◽  
Vol 12 (3) ◽  
pp. 291-298 ◽  
Author(s):  
Webb Miller
1972 ◽  
Vol 12 (3) ◽  
pp. 284-290 ◽  
Author(s):  
William Chuba ◽  
Webb Miller

1973 ◽  
Vol 13 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Webb Miller

2020 ◽  
Author(s):  
Matheus Pereira Lobo

We use the Infinity Theorem to find two possible values for S+.


2017 ◽  
Vol 11 (10) ◽  
pp. 1354-1362 ◽  
Author(s):  
Peng Li ◽  
Witold Pedrycz ◽  
Wanye Xu ◽  
Li‐Wei Song

2002 ◽  
Vol 237-239 ◽  
pp. 1603-1609 ◽  
Author(s):  
Takahiro Hasegawa ◽  
Akinori Koukitu ◽  
Yoshinao Kumagai

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Weiping Shen

We propose a generalized inexact Newton method for solving the inverse eigenvalue problems, which includes the generalized Newton method as a special case. Under the nonsingularity assumption of the Jacobian matrices at the solutionc*, a convergence analysis covering both the distinct and multiple eigenvalue cases is provided and the quadratic convergence property is proved. Moreover, numerical tests are given in the last section and comparisons with the generalized Newton method are made.


Computing ◽  
1979 ◽  
Vol 23 (1) ◽  
pp. 85-97 ◽  
Author(s):  
K. Ichida ◽  
Y. Fujii

Sign in / Sign up

Export Citation Format

Share Document