A description of the finite right-congruences of finitely generated free semigroups

1971 ◽  
Vol 1 (2) ◽  
pp. 135-144
Author(s):  
A. Ádám
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nwawuru Francis

Let and  be two free semigroups. We define external direct product of two free semigroups as an ordered pair of words such  that and .We investigate the presentations of external direct product of free semigroups, state and prove under some conditions that the external direct product of two finitely generated free semigroups is finitely generated, also the external direct product of two finitely presented free semigroups is finitely presented. 


2005 ◽  
Vol 15 (05n06) ◽  
pp. 1189-1204
Author(s):  
L. M. SHNEERSON

In this paper we discuss the problem: how large can the intermediate growth of nilpotent and relatively free semigroups be. We construct a sequence {Sn} of finitely-generated semigroups such that the growth of the semigroup Sn+1 (n = 1,2,…) is intermediate and larger than or equal to the growth of exp (m/φn(m)), where φn(m) is the nth iteration of ln m. All semigroups Sn are nilpotent in the sense of Malcev. We also find the sequence of relatively free semigroups with the same types of growth.


2020 ◽  
Vol 101 (2) ◽  
pp. 326-357
Author(s):  
Ashley Clayton

Abstract We consider necessary and sufficient conditions for finite generation and finite presentability for fiber products of free semigroups and free monoids. We give a necessary and sufficient condition on finite fiber quotients for a fiber product of two free monoids to be finitely generated, and show that all such fiber products are also finitely presented. By way of contrast, we show that fiber products of free semigroups over finite fiber quotients are never finitely generated. We then consider fiber products of free semigroups over infinite semigroups, and show that for such a fiber product to be finitely generated, the quotient must be infinite but finitely generated, idempotent-free, and $$\mathcal {J}$$ J -trivial. Finally, we construct automata accepting the indecomposable elements of the fiber product of two free monoids/semigroups over free monoid/semigroup fibers, and give a necessary and sufficient condition for such a product to be finitely generated.


2011 ◽  
Vol 54 (2) ◽  
pp. 335-344
Author(s):  
MUSTAFA GÖKHAN BENLI

AbstractIn this paper we look at presentations of subgroups of finitely presented groups with infinite cyclic quotients. We prove that if H is a finitely generated normal subgroup of a finitely presented group G with G/H cyclic, then H has ascending finite endomorphic presentation. It follows that any finitely presented indicable group without free semigroups has the structure of a semidirect product H ⋊ ℤ, where H has finite ascending endomorphic presentation.


2018 ◽  
Vol 2020 (12) ◽  
pp. 3753-3793
Author(s):  
Robert D Gray ◽  
Mark Kambites

Abstract We introduce two natural notions of cogrowth for finitely generated semigroups —one local and one global — and study their relationship with amenability and random walks. We establish the minimal and maximal possible values for cogrowth rates, and show that nonmonogenic-free semigroups are exactly characterised by minimal global cogrowth. We consider the relationship with cogrowth for groups and with amenability of semigroups. We also study the relationship with random walks on finitely generated semigroups, and in particular the spectral radius of the associated Markov operators (when defined) on $\ell _2$-spaces. We show that either of maximal global cogrowth or the weak Følner condition suffices for the spectral radius to be at least $1$; since left amenability implies the weak Følner condition, this represents a generalisation to semigroups of one implication of Kesten’s Theorem for groups. By combining with known results about amenability, we are able to establish a number of new sufficient conditions for (left or right) amenability in broad classes of semigroups. In particular, maximal local cogrowth left implies amenability in any left reversible semigroup, while maximal global cogrowth (which is a much weaker property) suffices for left amenability in an extremely broad class of semigroups encompassing all inverse semigroups, left reversible left cancellative semigroups and left reversible regular semigroups.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


2020 ◽  
Vol 108 (5-6) ◽  
pp. 671-678
Author(s):  
D. V. Gusev ◽  
I. A. Ivanov-Pogodaev ◽  
A. Ya. Kanel-Belov

2016 ◽  
Vol 17 (4) ◽  
pp. 979-980
Author(s):  
Alberto Chiecchio ◽  
Florian Enescu ◽  
Lance Edward Miller ◽  
Karl Schwede
Keyword(s):  

1985 ◽  
Vol 37 (2) ◽  
pp. 85-90
Author(s):  
I. I. Sakhaev

Sign in / Sign up

Export Citation Format

Share Document