FREE SEMIGROUP PRESENTATIONS

2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Nwawuru Francis

Let and  be two free semigroups. We define external direct product of two free semigroups as an ordered pair of words such  that and .We investigate the presentations of external direct product of free semigroups, state and prove under some conditions that the external direct product of two finitely generated free semigroups is finitely generated, also the external direct product of two finitely presented free semigroups is finitely presented. 

2011 ◽  
Vol 54 (2) ◽  
pp. 335-344
Author(s):  
MUSTAFA GÖKHAN BENLI

AbstractIn this paper we look at presentations of subgroups of finitely presented groups with infinite cyclic quotients. We prove that if H is a finitely generated normal subgroup of a finitely presented group G with G/H cyclic, then H has ascending finite endomorphic presentation. It follows that any finitely presented indicable group without free semigroups has the structure of a semidirect product H ⋊ ℤ, where H has finite ascending endomorphic presentation.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250017 ◽  
Author(s):  
LEONARDO CABRER ◽  
DANIELE MUNDICI

An ℓ-groupG is an abelian group equipped with a translation invariant lattice-order. Baker and Beynon proved that G is finitely generated projective if and only if it is finitely presented. A unital ℓ-group is an ℓ-group G with a distinguished order unit, i.e. an element 0 ≤ u ∈ G whose positive integer multiples eventually dominate every element of G. Unital ℓ-homomorphisms between unital ℓ-groups are group homomorphisms that also preserve the order unit and the lattice structure. A unital ℓ-group (G, u) is projective if whenever ψ : (A, a) → (B, b) is a surjective unital ℓ-homomorphism and ϕ : (G, u) → (B, b) is a unital ℓ-homomorphism, there is a unital ℓ-homomorphism θ : (G, u) → (A, a) such that ϕ = ψ ◦ θ. While every finitely generated projective unital ℓ-group is finitely presented, the converse does not hold in general. Classical algebraic topology (à la Whitehead) is combined in this paper with the Włodarczyk–Morelli solution of the weak Oda conjecture for toric varieties, to describe finitely generated projective unital ℓ-groups.


2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


1999 ◽  
Vol 42 (3) ◽  
pp. 481-495 ◽  
Author(s):  
H. Ayik ◽  
N. Ruškuc

In this paper we consider finite generation and finite presentability of Rees matrix semigroups (with or without zero) over arbitrary semigroups. The main result states that a Rees matrix semigroup M[S; I, J; P] is finitely generated (respectively, finitely presented) if and only if S is finitely generated (respectively, finitely presented), and the sets I, J and S\U are finite, where U is the ideal of S generated by the entries of P.


2019 ◽  
Vol 71 (1) ◽  
pp. 53-71
Author(s):  
Peter Mayr ◽  
Nik Ruškuc

Abstract Let $K$ be a commutative Noetherian ring with identity, let $A$ be a $K$-algebra and let $B$ be a subalgebra of $A$ such that $A/B$ is finitely generated as a $K$-module. The main result of the paper is that $A$ is finitely presented (resp. finitely generated) if and only if $B$ is finitely presented (resp. finitely generated). As corollaries, we obtain: a subring of finite index in a finitely presented ring is finitely presented; a subalgebra of finite co-dimension in a finitely presented algebra over a field is finitely presented (already shown by Voden in 2009). We also discuss the role of the Noetherian assumption on $K$ and show that for finite generation it can be replaced by a weaker condition that the module $A/B$ be finitely presented. Finally, we demonstrate that the results do not readily extend to non-associative algebras, by exhibiting an ideal of co-dimension $1$ of the free Lie algebra of rank 2 which is not finitely generated as a Lie algebra.


1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


2020 ◽  
Vol 71 (4) ◽  
pp. 1461-1488
Author(s):  
Yang Dandan ◽  
Victoria Gould ◽  
Miklós Hartmann ◽  
Nik Ruškuc ◽  
Rida-E Zenab

Abstract A monoid S is right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. This is a finiteness condition, and we investigate whether or not it is preserved under some standard algebraic and semigroup theoretic constructions: subsemigroups, homomorphic images, direct products, Rees matrix semigroups, including Brandt semigroups, and Bruck–Reilly extensions. We also investigate the relationship with the property of being weakly right noetherian, which requires all right ideals of S to be finitely generated.


1987 ◽  
Vol 30 (1) ◽  
pp. 23-39 ◽  
Author(s):  
Helmut Behr

Arithmetic subgroups of reductive algebraic groups over number fields are finitely presentable, but over global function fields this is not always true. All known exceptions are “small” groups, which means that either the rank of the algebraic group or the set S of the underlying S-arithmetic ring has to be small. There exists now a complete list of all such groups which are not finitely generated, whereas we onlyhave a conjecture which groups are finitely generated but not finitely presented.


2007 ◽  
Vol 49 (1) ◽  
pp. 23-28
Author(s):  
JON CORSON ◽  
DOHYOUNG RYANG

Abstract.A finitely generated group acting properly, cocompactly, and by isometries on an Lδ-metric space is finitely presented and has a sub-cubic isoperimetric function.


Sign in / Sign up

Export Citation Format

Share Document