free monoids
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 0)

H-INDEX

13
(FIVE YEARS 0)

2020 ◽  
Vol 101 (2) ◽  
pp. 326-357
Author(s):  
Ashley Clayton

Abstract We consider necessary and sufficient conditions for finite generation and finite presentability for fiber products of free semigroups and free monoids. We give a necessary and sufficient condition on finite fiber quotients for a fiber product of two free monoids to be finitely generated, and show that all such fiber products are also finitely presented. By way of contrast, we show that fiber products of free semigroups over finite fiber quotients are never finitely generated. We then consider fiber products of free semigroups over infinite semigroups, and show that for such a fiber product to be finitely generated, the quotient must be infinite but finitely generated, idempotent-free, and $$\mathcal {J}$$ J -trivial. Finally, we construct automata accepting the indecomposable elements of the fiber product of two free monoids/semigroups over free monoid/semigroup fibers, and give a necessary and sufficient condition for such a product to be finitely generated.



2020 ◽  
Vol 30 (04) ◽  
pp. 731-819
Author(s):  
Volker Diekert ◽  
Murray Elder

It is well known that the problem solving equations in virtually free groups can be reduced to the problem of solving twisted word equations with regular constraints over free monoids with involution. In this paper, we prove that the set of all solutions of a twisted word equation is an EDT0L language whose specification can be computed in PSPACE . Within the same complexity bound we can decide whether the solution set is empty, finite, or infinite. In the second part of the paper we apply the results for twisted equations to obtain in PSPACE an EDT0L description of the solution set of equations with rational constraints for finitely generated virtually free groups in standard normal forms with respect to a natural set of generators. If the rational constraints are given by a homomorphism into a fixed (or “small enough”) finite monoid, then our algorithms can be implemented in [Formula: see text], that is, in quasi-quadratic nondeterministic space. Our results generalize the work by Lohrey and Sénizergues (ICALP 2006) and Dahmani and Guirardel (J. of Topology 2010) with respect to both complexity and expressive power. Neither paper gave any concrete complexity bound and the results in these papers are stated for subsets of solutions only, whereas our results concern all solutions.



2020 ◽  
Vol 30 ◽  
Author(s):  
RUBEN P. PIETERS ◽  
EXEQUIEL RIVAS ◽  
TOM SCHRIJVERS

Abstract Algebraic effects and handlers are a convenient method for structuring monadic effects with primitive effectful operations and separating the syntax from the interpretation of these operations. However, the scope of conventional handlers is limited as not all side effects are monadic in nature. This paper generalizes the notion of algebraic effects and handlers from monads to generalized monoids, which notably covers applicative functors and arrows as well as monads. For this purpose, we switch the category theoretical basis from free algebras to free monoids. In addition, we show how lax monoidal functors enable the reuse of handlers and programs across different computation classes, for example, handling applicative computations with monadic handlers. We motivate and present these handler interfaces in the context of build systems. Tasks in a build system are represented by a free computation and their interpretation as a handler. This use case is based on the work of Mokhov et al. [(2018). PACMPL2(ICFP), 79:1–79:29.].



2019 ◽  
Vol 80 ◽  
pp. 339-360 ◽  
Author(s):  
Mustapha Kabil ◽  
Maurice Pouzet ◽  
Ivo G. Rosenberg


2019 ◽  
Vol 30 (01) ◽  
pp. 135-169
Author(s):  
Michal Kunc ◽  
Jan Meitner

Given a partially commutative alphabet and a set of words [Formula: see text], the rank of [Formula: see text] expresses the amount of shuffling required to produce a word belonging to [Formula: see text] from two words whose concatenation belongs to the closure of [Formula: see text] with respect to the partial commutation. In this paper, the notion of rank is generalized from concatenations of two words to an arbitrary fixed number of words. In this way, an infinite sequence of non-negative integers and infinity is assigned to every set of words. It is proved that in the case of alphabets defining free commutative monoids, as well as in the more general case of direct products of free monoids, sequences of ranks of regular sets are exactly non-decreasing sequences that are eventually constant. On the other hand, by uncovering a relationship between rank sequences of regular sets and rational series over the min-plus semiring, it is shown that already for alphabets defining free products of free commutative monoids, rank sequences need not be eventually periodic.



2018 ◽  
Vol 12 (4) ◽  
pp. 1485-1521
Author(s):  
Tobias Hartnick ◽  
Alexey Talambutsa


2018 ◽  
Vol 10 (2) ◽  
pp. 63-82
Author(s):  
Pedro V. Silva ◽  
Alexander Zakharov

AbstractWe prove that it is decidable whether or not a finitely generated submonoid of a virtually free group is graded, introduce a new geometric characterization of graded submonoids in virtually free groups as quasi-geodesic submonoids, and show that their word problem is rational (as a relation). We also solve the isomorphism problem for this class of monoids, generalizing earlier results for submonoids of free monoids. We also prove that the classes of graded monoids, regular monoids and Kleene monoids coincide for submonoids of free groups.



2018 ◽  
Vol 52 (1) ◽  
pp. 55-86 ◽  
Author(s):  
Chris Köcher ◽  
Dietrich Kuske ◽  
Olena Prianychnykova

We model the behavior of a lossy fifo-queue as a monoid of transformations that are induced by sequences of writing and reading. To have a common model for reliable and lossy queues, we split the alphabet of the queue into two parts: the forgettable letters and the letters that are transmitted reliably. We describe this monoid by means of a confluent and terminating semi-Thue system and then study some of the monoid’s algebraic properties. In particular, we characterize completely when one such monoid can be embedded into another as well as which trace monoids occur as submonoids. Surprisingly, these are precisely those trace monoids that embed into the direct product of two free monoids – which gives a partial answer to a question raised by Diekert et al. at STACS 1995.



2017 ◽  
Vol 78 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Patrick Cégielski ◽  
Serge Grigorieff ◽  
Irène Guessarian




Sign in / Sign up

Export Citation Format

Share Document