scholarly journals Quasifinite highest weight modules over the Lie algebra of differential operators on the circle

1993 ◽  
Vol 157 (3) ◽  
pp. 429-457 ◽  
Author(s):  
Victor Kac ◽  
Andrey Radul

1998 ◽  
Vol 39 (5) ◽  
pp. 2910-2928 ◽  
Author(s):  
Carina Boyallian ◽  
Victor G. Kac ◽  
José I. Liberati ◽  
Catherine H. Yan


2003 ◽  
Vol 46 (4) ◽  
pp. 529-537 ◽  
Author(s):  
Yuly Billig

AbstractWe describe the structure of the irreducible highest weight modules for the twisted Heisenberg–Virasoro Lie algebra at level zero. We prove that either a Verma module is irreducible or its maximal submodule is cyclic.









1996 ◽  
Vol 221 (1) ◽  
pp. 193-209 ◽  
Author(s):  
B. Cox ◽  
V. Futorny ◽  
D. Melville


2011 ◽  
Vol 55 (1) ◽  
pp. 23-51 ◽  
Author(s):  
Susumu Ariki ◽  
Nicolas Jacon ◽  
Cédric Lecouvey

AbstractThe level l Fock space admits canonical bases $\mathcal{G}_{e}$ and $\smash{\mathcal{G}_{\infty}}$. They correspond to $\smash{\mathcal{U}_{v}(\widehat{\mathfrak{sl}}_{e})}$ and $\mathcal{U}_{v}({\mathfrak{sl}}_{\infty})$-module structures. We establish that the transition matrices relating these two bases are unitriangular with coefficients in ℕ[v]. Restriction to the highest-weight modules generated by the empty l-partition then gives a natural quantization of a theorem by Geck and Rouquier on the factorization of decomposition matrices which are associated to Ariki–Koike algebras.





Sign in / Sign up

Export Citation Format

Share Document