fock space
Recently Published Documents


TOTAL DOCUMENTS

1058
(FIVE YEARS 157)

H-INDEX

46
(FIVE YEARS 6)

2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Xiaofeng Wang ◽  
Zhicheng Zeng

We introduce the BMO spaces and use them to characterize complex-valued functions f such that the big Hankel operators H f and H f ¯ are both bounded or compact from a weighted large Fock space F p ϕ into a weighted Lebesgue space L p ϕ when 1 ≤ p < ∞ .


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Thomas Colas ◽  
Julien Grain ◽  
Vincent Vennin

AbstractWe construct the four-mode squeezed states and study their physical properties. These states describe two linearly-coupled quantum scalar fields, which makes them physically relevant in various contexts such as cosmology. They are shown to generalise the usual two-mode squeezed states of single-field systems, with additional transfers of quanta between the fields. To build them in the Fock space, we use the symplectic structure of the phase space. For this reason, we first present a pedagogical analysis of the symplectic group $$\mathrm {Sp}(4,{\mathbb {R}})$$ Sp ( 4 , R ) and its Lie algebra, from which we construct the four-mode squeezed states and discuss their structure. We also study the reduced single-field system obtained by tracing out one of the two fields. This procedure being easier in the phase space, it motivates the use of the Wigner function which we introduce as an alternative description of the state. It allows us to discuss environmental effects in the case of linear interactions. In particular, we find that there is always a range of interaction coupling for which decoherence occurs without substantially affecting the power spectra (hence the observables) of the system.


2022 ◽  
Vol 16 (1) ◽  
Author(s):  
Antonio Galbis

AbstractAn estimate for the norm of selfadjoint Toeplitz operators with a radial, bounded and integrable symbol is obtained. This emphasizes the fact that the norm of such operator is strictly less than the supremum norm of the symbol. Consequences for time-frequency localization operators are also given.


Author(s):  
Peter beim Graben ◽  
Markus Huber ◽  
Werner Meyer ◽  
Ronald Römer ◽  
Matthias Wolff

AbstractVector symbolic architectures (VSA) are a viable approach for the hyperdimensional representation of symbolic data, such as documents, syntactic structures, or semantic frames. We present a rigorous mathematical framework for the representation of phrase structure trees and parse trees of context-free grammars (CFG) in Fock space, i.e. infinite-dimensional Hilbert space as being used in quantum field theory. We define a novel normal form for CFG by means of term algebras. Using a recently developed software toolbox, called FockBox, we construct Fock space representations for the trees built up by a CFG left-corner (LC) parser. We prove a universal representation theorem for CFG term algebras in Fock space and illustrate our findings through a low-dimensional principal component projection of the LC parser state. Our approach could leverage the development of VSA for explainable artificial intelligence (XAI) by means of hyperdimensional deep neural computation.


Author(s):  
PHAM VIET HAI

Abstract We investigate unbounded, linear operators arising from a finite sum of composition operators on Fock space. Real symmetry and complex symmetry of these operators are characterised.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jorge Luis Arroyo Neri ◽  
Armando Sánchez-Nungaray ◽  
Mauricio Hernández Marroquin ◽  
Raquiel R. López-Martínez

We introduce the so-called extended Lagrangian symbols, and we prove that the C ∗ -algebra generated by Toeplitz operators with these kind of symbols acting on the homogeneously poly-Fock space of the complex space ℂ n is isomorphic and isometric to the C ∗ -algebra of matrix-valued functions on a certain compactification of ℝ n obtained by adding a sphere at the infinity; moreover, the matrix values at the infinity points are equal to some scalar multiples of the identity matrix.


Author(s):  
Lukas Pausch ◽  
Edoardo G Carnio ◽  
Andreas Buchleitner ◽  
Alberto Rodríguez González

Abstract We investigate the chaotic phase of the Bose-Hubbard model [L. Pausch et al, Phys. Rev. Lett. 126, 150601 (2021)] in relation to the bosonic embedded random matrix ensemble, which mirrors the dominant few-body nature of many-particle interactions, and hence the Fock space sparsity of quantum many-body systems. The energy dependence of the chaotic regime is well described by the bosonic embedded ensemble, which also reproduces the Bose-Hubbard chaotic eigenvector features, quantified by the expectation value and eigenstate-to-eigenstate fluctuations of fractal dimensions. Despite this agreement, in terms of the fractal dimension distribution, these two models depart from each other and from the Gaussian orthogonal ensemble as Hilbert space grows. These results provide further evidence of a way to discriminate among different many-body Hamiltonians in the chaotic regime.


Sign in / Sign up

Export Citation Format

Share Document