scholarly journals The tangent bundle of a Calabi-Yau manifold-deformations and restriction to rational curves

1995 ◽  
Vol 171 (1) ◽  
pp. 139-158 ◽  
Author(s):  
D. Huybrechts
Author(s):  
Alessandro Gimigliano ◽  
Brian Harbourne ◽  
Monica Idà

1998 ◽  
Vol 97 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Frédéric Campana ◽  
Thomas Peternell

2014 ◽  
Vol 361 (3-4) ◽  
pp. 583-609 ◽  
Author(s):  
Roberto Muñoz ◽  
Gianluca Occhetta ◽  
Luis E. Solá Conde ◽  
Kiwamu Watanabe

Filomat ◽  
2019 ◽  
Vol 33 (8) ◽  
pp. 2543-2554
Author(s):  
E. Peyghan ◽  
F. Firuzi ◽  
U.C. De

Starting from the g-natural Riemannian metric G on the tangent bundle TM of a Riemannian manifold (M,g), we construct a family of the Golden Riemannian structures ? on the tangent bundle (TM,G). Then we investigate the integrability of such Golden Riemannian structures on the tangent bundle TM and show that there is a direct correlation between the locally decomposable property of (TM,?,G) and the locally flatness of manifold (M,g).


1997 ◽  
Vol 308 (2) ◽  
pp. 347-359 ◽  
Author(s):  
Sándor J. Kovács
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
pp. 208-222
Author(s):  
Georges Dloussky

Abstract Let S be a compact complex surface in class VII0 + containing a cycle of rational curves C = ∑Dj . Let D = C + A be the maximal connected divisor containing C. If there is another connected component of curves C ′ then C ′ is a cycle of rational curves, A = 0 and S is a Inoue-Hirzebruch surface. If there is only one connected component D then each connected component Ai of A is a chain of rational curves which intersects a curve Dj of the cycle and for each curve Dj of the cycle there at most one chain which meets Dj . In other words, we do not prove the existence of curves other those of the cycle C, but if some other curves exist the maximal divisor looks like the maximal divisor of a Kato surface with perhaps missing curves. The proof of this topological result is an application of Donaldson theorem on trivialization of the intersection form and of deformation theory. We apply this result to show that a twisted logarithmic 1-form has a trivial vanishing divisor.


2021 ◽  
pp. 1-26
Author(s):  
THOMAS METTLER ◽  
GABRIEL P. PATERNAIN

Abstract We associate a flow $\phi $ with a solution of the vortex equations on a closed oriented Riemannian 2-manifold $(M,g)$ of negative Euler characteristic and investigate its properties. We show that $\phi $ always admits a dominated splitting and identify special cases in which $\phi $ is Anosov. In particular, starting from holomorphic differentials of fractional degree, we produce novel examples of Anosov flows on suitable roots of the unit tangent bundle of $(M,g)$ .


1981 ◽  
Vol 82 ◽  
pp. 1-26
Author(s):  
Daniel Comenetz

Let X be a nonsingular algebraic K3 surface carrying a nonsingular hyperelliptic curve of genus 3 and no rational curves. Our purpose is to study two algebraic deformations of X, viz. one specialization and one generalization. We assume the characteristic ≠ 2. The generalization of X is a nonsingular quartic surface Q in P3 : we wish to show in § 1 that there is an irreducible algebraic family of surfaces over the affine line, in which X is a member and in which Q is a general member. The specialization of X is a surface Y having a birational model which is a ramified double cover of a quadric cone in P3.


Sign in / Sign up

Export Citation Format

Share Document