Order statistics for first passage times in one-dimensional diffusion processes

1996 ◽  
Vol 85 (3-4) ◽  
pp. 501-512 ◽  
Author(s):  
S. Bravo Yuste ◽  
Katja Lindenberg

1983 ◽  
Vol 31 (2) ◽  
pp. 255-278 ◽  
Author(s):  
George H. Weiss ◽  
Kurt E. Shuler ◽  
Katja Lindenberg


2014 ◽  
Vol 13 (04) ◽  
pp. 1430001 ◽  
Author(s):  
Jaume Masoliver

We review the level-crossing problem which includes the first-passage and escape problems as well as the theory of extreme values (the maximum, the minimum, the maximum absolute value and the range or span). We set the definitions and general results and apply them to one-dimensional diffusion processes with explicit results for the Brownian motion and the Ornstein–Uhlenbeck (OU) process.



1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].



1983 ◽  
Vol 30 (2) ◽  
pp. 283-285 ◽  
Author(s):  
Cyrus Derman ◽  
Sheldon M. Ross ◽  
Zvi Schechner


1989 ◽  
Vol 26 (4) ◽  
pp. 707-721 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

Special symmetry conditions on the transition p.d.f. of one-dimensional time-homogeneous diffusion processes with natural boundaries are investigated and exploited to derive closed-form results concerning the transition p.d.f.'s in the presence of absorbing and reflecting boundaries and the first-passage-time p.d.f. through time-dependent boundaries.





2014 ◽  
Vol 244 ◽  
pp. 432-446 ◽  
Author(s):  
P. Román-Román ◽  
J.J. Serrano-Pérez ◽  
F. Torres-Ruiz


1990 ◽  
Vol 22 (4) ◽  
pp. 883-914 ◽  
Author(s):  
V. Giorno ◽  
A. G. Nobile ◽  
L. M. Ricciardi

Making use of the integral equations given in [1], [2] and [3], the asymptotic behaviour of the first-passage time (FPT) p.d.f.'s through certain time-varying boundaries, including periodic boundaries, is determined for a class of one-dimensional diffusion processes with steady-state density. Sufficient conditions are given for the cases both of single and of pairs of asymptotically constant and asymptotically periodic boundaries, under which the FPT densities asymptotically exhibit an exponential behaviour. Explicit expressions are then worked out for the processes that can be obtained from the Ornstein–Uhlenbeck process by spatial transformations. Some new asymptotic results for the FPT density of the Wiener process are finally proved, together with a few miscellaneous results.



Sign in / Sign up

Export Citation Format

Share Document