The determination of mode I stress-intensity factors by holographic interferometry

1973 ◽  
Vol 13 (4) ◽  
pp. 145-149 ◽  
Author(s):  
T. D. Dudderar ◽  
H. J. Gorman
2008 ◽  
Vol 3 (7) ◽  
pp. 1239-1255 ◽  
Author(s):  
Sanda Swamy ◽  
Manda Srikanth ◽  
Kondepudi Murthy ◽  
Puthuveettin Robi

2005 ◽  
Author(s):  
Sridhar Santhanam

A method is presented here to extract stress intensity factors for interface cracks in plane bimaterial fracture problems. The method relies on considering a companion problem wherein a very thin elastic interlayer is artificially inserted between the two material regions of the original bimaterial problem. The crack in the companion problem is located in the middle of the interlayer with its tip located within the homogeneous interlayer material. When the thickness of the interlayer is small compared with the other length scales of the problem, a universal relation can be established between the actual interface stress intensity factors at the crack tip for the original problem and the mode I and II stress intensity factors associated with the companion problem. The universal relation is determined by formulating and solving a boundary value problem. This universal relation now allows the determination of the stress intensity factors for a generic plane interface crack problem as follows. For a given interface crack problem, the companion problem is formulated and solved using the finite element method. Mode I and II stress intensity factors are obtained using the modified virtual crack closure method. The universal relation is next used to obtain the corresponding interface stress intensity factors for the original interface crack problem. An example problem involving a finite interface crack between two semi-infinite blocks is considered for which analytical solutions exist. It is shown that the method described above provides very acceptable results.


1983 ◽  
Vol 19 (2) ◽  
pp. 131-135 ◽  
Author(s):  
A. V. Ovchinnikov ◽  
Yu. S. Safarov ◽  
R. N. Garlinskii

1997 ◽  
Vol 119 (4) ◽  
pp. 276-280 ◽  
Author(s):  
S. Gu¨ngo¨r ◽  
E. A. Patterson

Three-dimensional photoelasticity was used to measure mode I stress intensity factors of corner cracks in a double-shear bolted joint. A model of the joint assembly was manufactured from a photoelastic material and three different corner cracks were introduced using a cutting wheel. After the stress freezing process, slices along the crack fronts were cut and analyzed using three different photoelastic procedures. There was good correlation between the methods of analysis. Stress intensity factors of these cracks were found to vary along the crack front with a maximum at the bore of the hole and a minimum on the surface of the plate. This implies that the cracks are likely to grow more rapidly along the bore.


Sign in / Sign up

Export Citation Format

Share Document