Bands, tangles and linear skein theory

1991 ◽  
Vol 71 (1) ◽  
pp. 317-336 ◽  
Author(s):  
Uwe Kaiser
Keyword(s):  
2017 ◽  
Vol 60 (2) ◽  
pp. 333-338 ◽  
Author(s):  
GREGOR MASBAUM

AbstractWe use elementary skein theory to prove a version of a result of Stylianakis (Stylianakis, The normal closure of a power of a half-twist has infinite index in the mapping class group of a punctured sphere, arXiv:1511.02912) who showed that under mild restrictions on m and n, the normal closure of the mth power of a half-twist has infinite index in the mapping class group of a sphere with 2n punctures.


2008 ◽  
Vol 17 (08) ◽  
pp. 925-937
Author(s):  
TOSHIFUMI TANAKA

We give formulas for the N-colored Jones polynomials of doubles of knots by using skein theory. As a corollary, we show that if the volume conjecture for untwisted positive (or negative) doubles of knots is true, then the colored Jones polynomial detects the unknot.


1996 ◽  
Vol 05 (04) ◽  
pp. 427-439 ◽  
Author(s):  
RICCARDO BENEDETTI ◽  
CARLO PETRONIO

In this paper we discuss the beautiful idea of Justin Roberts [7] (see also [8]) to re-obtain the Turaev-Viro invariants [11] via skein theory, and re-prove elementarily the Turaev-Walker theorem [9], [10], [13]. We do this by exploiting the presentation of 3-manifolds introduced in [1], [4]. Our presentation supports in a very natural way a formal implementation of Roberts’ idea. More specifically, what we show is how to explicitly extract from an o-graph (the object by which we represent a manifold, see below), one of the framed links in S3 which Roberts uses in the construction of his invariant, and a planar diagrammatic representation of such a link. This implies that the proofs of invariance and equality with the Turaev-Viro invariant can be carried out in a completely “algebraic” way, in terms of a planar diagrammatic calculus which does not require any interpretation of 3-dimensional figures. In particular, when proving the “term-by-term” equality of the expansion of the Roberts invariant with the state sum which gives the Turaev-Viro invariant, we simultaneously apply several times the “fusion rule” (which is formally defined, strictly speaking, only in diagrammatic terms), showing that the “braiding and twisting” which a priori may exist on tetrahedra is globally dispensable. In our point of view the success of this formal “algebraic” approach witnesses a certain efficiency of our presentation of 3-manifolds via o-graphs. In this work we will widely use recoupling theory which was very clearly exposed in [2], and therefore we will avoid recalling notations. Actually, for the purpose of stating and proving our results we will need to slightly extend the class of trivalent ribbon diagrams on which the bracket can be computed. We also address the reader to the references quoted in [2], in particular for the fundamental contributions of Lickorish to this area. In our approach it is more natural to consider invariants of compact 3-manifolds with non-empty boundary. The case of closed 3-manifolds is included by introducing a correction factor corresponding to boundary spheres, as explained in §2. Our main result is actually an extension to manifolds with boundary of the Turaev-Walker theorem: we show that the Turaev-Viro invariant of such a manifold coincides (up to a factor which depends on the Euler characteristic) with the Reshetikhin-Turaev-Witten invariant of the manifold mirrored in its boundary.


1987 ◽  
Vol 27 (3) ◽  
pp. 265-274 ◽  
Author(s):  
W.B.R. Lickorish
Keyword(s):  

2019 ◽  
Vol 356 ◽  
pp. 106804
Author(s):  
Yunxiang Ren
Keyword(s):  

2003 ◽  
Vol 55 (4) ◽  
pp. 766-821 ◽  
Author(s):  
Thomas Kerler

AbstractWe develop an explicit skein-theoretical algorithm to compute the Alexander polynomial of a 3-manifold from a surgery presentation employing the methods used in the construction of quantum invariants of 3-manifolds. As a prerequisite we establish and prove a rather unexpected equivalence between the topological quantum field theory constructed by Frohman and Nicas using the homology ofU(1)-representation varieties on the one side and the combinatorially constructed Hennings TQFT based on the quasitriangular Hopf algebra= ℤ/2 n ⋊ Λ* ℝ2on the other side. We find that both TQFT's are SL(2; ℝ)-equivariant functors and, as such, are isomorphic. The SL(2; ℝ)-action in the Hennings construction comes from the natural action onand in the case of the Frohman–Nicas theory from the Hard–Lefschetz decomposition of theU(1)-moduli spaces given that they are naturally Kähler. The irreducible components of this TQFT, corresponding to simple representations of SL(2; ℤ) and Sp(2g; ℤ), thus yield a large family of homological TQFT's by taking sums and products. We give several examples of TQFT's and invariants that appear to fit into this family, such as Milnor and Reidemeister Torsion, Seiberg–Witten theories, Casson type theories for homology circlesà laDonaldson, higher rank gauge theories following Frohman and Nicas, and the ℤ=pℤ reductions of Reshetikhin.Turaev theories over the cyclotomic integers ℤ[ζp]. We also conjecture that the Hennings TQFT for quantum-sl2is the product of the Reshetikhin–Turaev TQFT and such a homological TQFT.


2010 ◽  
Vol 214 (2) ◽  
pp. 117-139 ◽  
Author(s):  
Scott Morrison ◽  
Emily Peters ◽  
Noah Snyder
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document