Coercive Lp-estimates for solutions to the initial-boundary-value problem for the generalized stokes equations in a half-space

2000 ◽  
Vol 102 (5) ◽  
pp. 4523-4543
Author(s):  
V. A. Solonnikov
2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hailiang Li ◽  
Houzhi Tang ◽  
Haitao Wang

<p style='text-indent:20px;'>In this paper, we study the global existence and pointwise behavior of classical solution to one dimensional isentropic Navier-Stokes equations with mixed type boundary condition in half space. Based on classical energy method for half space problem, the global existence of classical solution is established firstly. Through analyzing the quantitative relationships of Green's function between Cauchy problem and initial boundary value problem, we observe that the leading part of Green's function for the initial boundary value problem is composed of three items: delta function, diffusive heat kernel, and reflected term from the boundary. Then applying Duhamel's principle yields the explicit expression of solution. With the help of accurate estimates for nonlinear wave coupling and the elliptic structure of velocity, the pointwise behavior of the solution is obtained under some appropriate assumptions on the initial data. Our results prove that the solution converges to the equilibrium state at the optimal decay rate <inline-formula><tex-math id="M1">\begin{document}$ (1+t)^{-\frac{1}{2}} $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M2">\begin{document}$ L^\infty $\end{document}</tex-math></inline-formula> norm.</p>


2007 ◽  
Vol 14 (1) ◽  
pp. 123-134
Author(s):  
Friedrich-Karl Hebeker ◽  
George C. Hsiao

Abstract A constructive approach is presented to treat an initial boundary value problem for isothermal Navier–Stokes equations. It is based on a characteristics (Lagrangean) approximation locally in time and a boundary integral equation method via nonstationary potentials. As a basic problem, the latter leads to a Volterra integral equation of first kind which is proved to be uniquely solvable and even coercive in some anisotropic Sobolev spaces. The solution depends continuously upon the data and can be constructed by a quasioptimal Galerkin procedure.


Sign in / Sign up

Export Citation Format

Share Document