Shock loading of a cylindrical shell filled with viscous compressible liquid

1999 ◽  
Vol 35 (11) ◽  
pp. 1132-1138
Author(s):  
A. É. Babaev
2021 ◽  
Vol 264 ◽  
pp. 02017
Author(s):  
Khayrulla Khudoynazarov ◽  
Burxon Yalgashev

This article investigates the longitudinal vibrations of a semi-infinite circular cylindrical elastic shell filled with a viscous compressible fluid. It is believed that the vibrations are excited by a suddenly switched on longitudinal displacement at the end. To solve the problem, the refined equations of longitudinal vibrations of a circular cylindrical elastic shell interacting with an internal viscous compressible fluid, previously proposed by the authors, were taken as the main resolving equations. In this case, the lateral surfaces of the shell are considered free from external loads; in addition, considering purely longitudinal vibrations, it can be assumed that the radial displacements of the points of the shell are equal to zero.


Author(s):  
Joachim Holzfuss

Based on the theory of F. Gilmore ( Gilmore 1952 The growth or collapse of a spherical bubble in a viscous compressible liquid ) for radial oscillations of a bubble in a compressible medium, the sound emission of bubbles in water driven by high-amplitude ultrasound is calculated. The model is augmented to include expressions for a variable polytropic exponent, hardcore and water vapour. Radiated acoustic energies are calculated within a quasi-acoustic approximation and also a shock wave model. Isoenergy lines are shown for driving frequencies of 23.5 kHz and 1 MHz. Together with calculations of stability against surface wave oscillations leading to fragmentation, the physically relevant parameter space for the bubble radii is found. Its upper limit is around 6 μm for the lower frequency driving and 1–3 μm for the higher. The radiated acoustic energy of a single bubble driven in the kilohertz range is calculated to be of the order of 100 nJ per driving period; a bubble driven in the megahertz range reaches two orders of magnitude less. The results for the first have applications in sonoluminescence research. Megahertz frequencies are widely used in wafer cleaning, where radiated sound may be implicated as responsible for the damage of nanometre-sized structures.


2019 ◽  
Vol 84 (4) ◽  
pp. 696-711 ◽  
Author(s):  
Qianxi Wang ◽  
WenKe Liu ◽  
David M Leppinen ◽  
A D Walmsley

Abstract This paper is concerned with microbubble dynamics in a viscous compressible liquid near a rigid boundary. The compressible effects are modelled using the weakly compressible theory of Wang & Blake (2010, Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech., 730, 245–272), since the Mach number associated is small. The viscous effects are approximated using the viscous potential flow theory of Joseph & Wang (2004, The dissipation approximation and viscous potential flow. J. Fluid Mech., 505, 365–377), because the flow field is characterized as being an irrotational flow in the bulk volume but with a thin viscous boundary layer at the bubble surface. Consequently, the phenomenon is modelled using the boundary integral method, in which the compressible and viscous effects are incorporated into the model through including corresponding additional terms in the far field condition and the dynamic boundary condition at the bubble surface, respectively. The numerical results are shown in good agreement with the Keller–Miksis equation, experiments and computations based on the Navier–Stokes equations. The bubble oscillation, topological transform, jet development and penetration through the bubble and the energy of the bubble system are simulated and analysed in terms of the compressible and viscous effects.


Sign in / Sign up

Export Citation Format

Share Document