compressible medium
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 18)

H-INDEX

10
(FIVE YEARS 0)

Author(s):  
Sergey Timushev ◽  
Alexey Yakovlev ◽  
Dmitry Klimenko

Subsonic flow air blade machines like UAV propellers generate intensive noise thus the prediction of acoustic impact, optimization of these machines in order to reduce the level of emitted noise is an urgent engineering task. Currently, the development of calculation methods for determining the amplitudes of pressure pulsations and noise characteristics by CFD-CAA methods is a necessary requirement for the development of computer-aided design methods for blade machines, where the determining factors are the accuracy and speed of calculations. The main objective is to provide industrial computer-aided design systems with a highly efficient domestic software to create optimal designs of UAV blade machines that provide a given level of pressure pulsations in the flow part and radiated noise. It comprises: 1) creation of a method for the numerical simulation of sound generation using the correct decomposition of the initial equations of hydrodynamics of a compressible medium and the selection of the source of sound waves in a three-dimensional definition, taking into account the rotation of blades and their interaction with the stator part of the UAV; 2) decomposition of the boundary conditions accounting pseudo-sound disturbances and the complex acoustic impedance at the boundaries of the computational domain 3) development of an effective SLAE solver for solving the acoustic-vortex equation in complex arithmetic (taking into account the boundary conditions in the form of complex acoustic impedance); 4) testing of a new method at all stages of development using experimental data on the generation of pressure pulsations and aerodynamic noise, including a propeller noise measurements.


2021 ◽  
Author(s):  
Lysandros Pantelidis

Abstract In the present paper, the problem of finding the location of the so-called “characteristic point” of flexible footings is revisited. As known, the settlement at the characteristic point, is equal to the uniform settlement of the respective rigid footing. The cases of infinitely long strips and circular footings are studied fully analytically. For the case of rectangular footings, analytical results (for flexible footings) are compared with the respective numerical results (for rigid footings) obtained from 3D finite element analysis (210 cases were examined). As shown, the location of the characteristic point may greatly deviate from the well-known values reported in the literature, as it strongly depends on the thickness and Poisson’s ratio value of the compressible medium. For rectangular footings this location also depends on their aspect ratio, L/B. The location of the characteristic point with respect to the center of footing for the various cases examined is given in tabular form. Strain influence area values (Aj=ρjEs/qB) are also given for the convenient calculation of the settlement (ρj) of footings, especially the rigid, rectangular ones; q is the uniform surcharge of footing and Es the soil modulus.


2021 ◽  
Vol 18 (03) ◽  
pp. 761-787
Author(s):  
Tai-Ping Liu

Shock waves of arbitrary strength in the Euler equations for compressible media are studied. The admissibility condition for a shock wave is shown to be equivalent to its formation according to the entropy production criterion. The Riemann problem with large data has a unique admissible solutions. These quantitative results are based on the exact global expressions for the basic physical variables as the states move along the Hugoniot and wave curves.


2021 ◽  
pp. 104-111
Author(s):  
В.Д. Лукьянов ◽  
Л.В. Носова ◽  
Г.А. Лебедев ◽  
С.В. Попков

Получено точное аналитическое решение задачи о гармонических изгибных колебаниях тонкой круглой упругой пластины, расположенной в торце полубесконечного цилиндрического акустического волновода. Кромка пластины жестко заделана в стенку волновода. Волновод с жестким корпусом заполнен идеальной сжимаемой акустической средой. Колебания пластины возбуждаются набегающими на неё нормальными волнами волновода, распределение акустического давления для которых имеет цилиндрическую симметрию. Проведено численное исследование смещения пластины на разных частотах возбуждения. Показано, что наличие сжимаемой среды существенно влияет на форму колебаний пластины. Совместные колебания акустической среды и упругой пластины носят резонансный характер. На резонансных частотах имеет место значительное увеличение амплитуды колебаний пластины. На форму колебания пластины влияют как распространяющиеся, так и неоднородные нормальные волны в волноводе, что приводит к увеличению узловых линий в распределении смещения пластины. An exact analytical solution to the problem of harmonic bending oscillations of a thin round elastic plate located at the end of a semi-infinite cylindrical acoustic waveguide has been obtained. Plate edge is rigidly embedded in waveguide wall. The waveguide with rigid housing is filled with an ideal compressible acoustic medium. The plate oscillations are excited by the normal waveguide waves running to the plate. The distribution of acoustic pressure for waves has cylindrical symmetry. Numerical study of plate displacement at different excitation frequencies was carried out. It has been shown that the presence of a compressible medium significantly affects the waveform of the plate oscillation. Joint oscillations of acoustic medium and elastic plate are resonant. There is a significant increase in amplitude of plate oscillations at resonant frequencies. The waveform of the plate oscillation is influenced by both propagating and inhomogeneous normal waves in the waveguide, which leads to an increase in the nodal lines in the displacement distribution of the plate.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 267
Author(s):  
Andrey V. Boiko ◽  
Kirill V. Demyanko ◽  
Yuri M. Nechepurenko ◽  
Grigory V. Zasko

In this paper, known probabilistic methods for estimating the thickness of the boundary layer of a two-dimensional laminar flow of viscous incompressible fluid are extended to three-dimensional laminar flows of a viscous compressible medium. Their applicability to the problems of boundary-layer stability is studied with the LOTRAN3 software package, which allows us to compute the position of laminar-turbulent transition in three-dimensional aerodynamic configurations.


2021 ◽  
Vol 250 ◽  
pp. 02025
Author(s):  
Maxim Yu. Orlov ◽  
Viktor Glazyrin ◽  
Yulia Orlova

A numerical analysis on impact response of multilayer plates and plates with a gradient substrate against steel projectile perforation was made. The shear strength was varied in the substrate within a certain range. The behavior of bodies is modeled by an elastic-plastic, porous, compressible medium, taking into account shock-wave phenomena and fragmentary fracture of materials. A numerical lagrangian method with modified node splitting algorithms was used. Good agreement between the computed and experimental results was obtained. During perforation, pattern of destruction of all plates has been investigated. The results show impact resistance of plates with a gradient substrate was greater than the homogeneous steel one, but less than multilayer ones. However, the impact resistance of multilayer plates is explained by the pinching effect of the layers.


2021 ◽  
Vol 83 (1) ◽  
pp. 35-48
Author(s):  
I.A. Dyachenko ◽  
A.A. Mironov

The research materials are related to the problem of ensuring vibration resistance of pipelines exposed to dynamic loads, for which increased vibration is the main cause of damage. The solution to this problem involves studying the parameters of free vibrations of the structure. The paper solves the problem of determining the natural frequencies and forms of vibrations of a section of a circular cylindrical shell filled with an medium considered in the acoustic approximation. The results of studies of the parameters of free vibrations were obtained both by the analytical method of shell theory based on the Kirchhoff-Love hypotheses, and using the finite element complex of engineering analysis ANSYS. It is shown that the influence of the medium density on the parameters of free vibrations of the shell depends on the ratio of the shell thickness to its radius it turns out to be significant only for the shape of vibrations associated with bending deformation, and insignificant for forms associated with deformations of the middle layer. A comparative analysis of the results of calculations obtained for models of compressible and incompressible medium shows that when solving the problem of determining the parameters of free vibrations of the shell, the compressibility of the medium can be neglected. At the same time, to solve practical problems that require taking into account the full spectrum of natural frequencies of the shell–medium system, a compressible medium model should be used, in which the results on the effect of shell stiffness on the frequency spectrum of the medium volume are obtained. When solving practical problems of pipeline systems vibration, the use of the finite element method in a coupled formulation is an effective tool that allows us to consider all physical processes taking into account their mutual influence on each other.


Sign in / Sign up

Export Citation Format

Share Document