New generating relations for the multivariate biorthogonal Wilson polynomials

1996 ◽  
Vol 111 (11) ◽  
pp. 1395-1401
Author(s):  
H. Exton
2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

AbstractWe express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulæ for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.


Author(s):  
Paweł J. Szabłowski

We recall five families of polynomials constituting a part of the so-called Askey–Wilson scheme. We do this to expose properties of the Askey–Wilson (AW) polynomials that constitute the last, most complicated element of this scheme. In doing so we express AW density as a product of the density that makes q-Hermite polynomials orthogonal times a product of four characteristic function of q-Hermite polynomials (2.9) just pawing the way to a generalization of AW integral. Our main results concentrate mostly on the complex parameters case forming conjugate pairs. We present new fascinating symmetries between the variables and some newly defined (by the appropriate conjugate pair) parameters. In particular in (3.12) we generalize substantially famous Poisson–Mehler expansion formula (3.16) in which q-Hermite polynomials are replaced by Al-Salam–Chihara polynomials. Further we express Askey–Wilson polynomials as linear combinations of Al-Salam–Chihara (ASC) polynomials. As a by-product we get useful identities involving ASC polynomials. Finally by certain re-scaling of variables and parameters we reach AW polynomials and AW densities that have clear probabilistic interpretation.


2015 ◽  
Vol 424 (1) ◽  
pp. 664-674 ◽  
Author(s):  
Mourad E.H. Ismail ◽  
Dennis Stanton
Keyword(s):  

2000 ◽  
Vol 31 (1) ◽  
pp. 49-56
Author(s):  
R. K. Raina ◽  
T. S. Nahar

In this paper we obtain multiple-series generating relations involving a class of function $ \theta_{(p_n)}^{(\mu_n)}(s,a;x_1,\ldots,x_n)$ which are connected to the Hurwitz zeta function. Also, a new generalization of Lambert transform is introduced, and its relationship with the above class of functions further depicted.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2238
Author(s):  
Rahul Goyal ◽  
Praveen Agarwal ◽  
Alexandra Parmentier ◽  
Clemente Cesarano

The main aim of this work is to study an extension of the Caputo fractional derivative operator by use of the two-parameter Mittag–Leffler function given by Wiman. We have studied some generating relations, Mellin transforms and other relationships with extended hypergeometric functions in order to derive this extended operator. Due to symmetry in the family of special functions, it is easy to study their various properties with the extended fractional derivative operators.


Author(s):  
Gauhar Rahman ◽  
KS Nisar ◽  
Shahid Mubeen

In this paper, we define a (p,v)-extension of Hurwitz-Lerch Zeta function by considering an extension of beta function defined by Parmar et al. [J. Classical Anal. 11 (2017) 81–106]. We obtain its basic properties which include integral representations, Mellin transformation, derivative formulas and certain generating relations. Also, we establish the special cases of the main results.


Sign in / Sign up

Export Citation Format

Share Document