Gelfand-Phillips property in Köthe spaces of vector valued functions

1991 ◽  
Vol 40 (3) ◽  
pp. 438-441
Author(s):  
Giovanni Emmanuele
1989 ◽  
Vol 41 (4) ◽  
pp. 659-675 ◽  
Author(s):  
A. Kamińska ◽  
B. Turett

In this paper, Köthe spaces of vector-valued functions are considered. These spaces, which are generalizations of both the Lebesgue-Bochner and Orlicz-Bochner spaces, have been studied by several people (e.g., see [1], [8]). Perhaps the earliest paper concerning the rotundity of such Köthe space is due to I. Halperin [8]. In his paper, Halperin proved that the function spaces E(X) is uniformly rotund exactly when both the Köthe space E and the Banach space X are uniformly rotund; this generalized the analogous result, due to M. M. Day [4], concerning Lebesgue-Bochner spaces. In [20], M. Smith and B. Turett showed that many properties akin to uniform rotundity lift from X to the Lebesgue-Bochner space LP(X) when 1 < p < ∞. A survey of rotundity notions in Lebesgue-Bochner function and sequence spaces can be found in [19].


1996 ◽  
Vol 120 (3) ◽  
pp. 521-533 ◽  
Author(s):  
Joan Cerdà ◽  
Henryk Hudzik ◽  
Mieczysław Mastyło

AbstractConvexity, monotonicity and smoothness properties of Köthe spaces of vector-valued functions are described.


2017 ◽  
Vol 173 (2) ◽  
pp. 357-390 ◽  
Author(s):  
N. Dinh ◽  
M. A. Goberna ◽  
M. A. López ◽  
T. H. Mo

2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.


1997 ◽  
Vol 98 (1) ◽  
pp. 189-207 ◽  
Author(s):  
R. DeLaubenfels ◽  
Z. Huang ◽  
S. Wang ◽  
Y. Wang

2014 ◽  
Vol 57 (1) ◽  
pp. 17-82 ◽  
Author(s):  
TUOMAS P. HYTÖNEN ◽  
ANTTI V. VÄHÄKANGAS

AbstractWe extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.


1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].


Sign in / Sign up

Export Citation Format

Share Document