Proper homotopy theory in simplicial complexes

Author(s):  
Edward M. Brown



1990 ◽  
Vol 107 (3) ◽  
pp. 475-482 ◽  
Author(s):  
R. Ayala ◽  
A. Quintero ◽  
E. Dominguez

AbstractFollowing the techniques of ordinary homotopy theory, a theoretical treatment of proper homotopy theory, including the known proper homotopy groups, is provided within Baues's theory of cofibration categories.



1992 ◽  
Vol 153 (2) ◽  
pp. 201-215 ◽  
Author(s):  
R. Ayala ◽  
Eladio Domínguez Murillo ◽  
Alberto Márquez Pérez ◽  
A. Quintero


2003 ◽  
Vol 31 (12) ◽  
pp. 5995-6017 ◽  
Author(s):  
R. Ayala ◽  
M. Cárdenas ◽  
F. Muro ◽  
A. Quintero


1976 ◽  
Vol 82 (1) ◽  
pp. 59-61
Author(s):  
David A. Edwards ◽  
Harold M. Hastings


1974 ◽  
Vol 188 ◽  
pp. 105 ◽  
Author(s):  
E. M. Brown ◽  
T. W. Tucker


1974 ◽  
Vol 188 ◽  
pp. 105-105
Author(s):  
E. M. Brown ◽  
T. W. Tucker


1998 ◽  
Vol 41 (2) ◽  
pp. 247-263 ◽  
Author(s):  
R. Ayala ◽  
A. Quintero

This paper contains some basic relations between Ganea strong category and Lusternik Schnirelmann category in proper homotopy theory. We focus our interest on the case of category 2 in order to show that ℚn is the unique open n-manifold with proper Lusternik-Schnirelmann category 2 (n ≠ 3).



Sign in / Sign up

Export Citation Format

Share Document