Proper Homotopy Theory and Transfers for Infinite Groups

Author(s):  
Gunnar Carlsson
1990 ◽  
Vol 107 (3) ◽  
pp. 475-482 ◽  
Author(s):  
R. Ayala ◽  
A. Quintero ◽  
E. Dominguez

AbstractFollowing the techniques of ordinary homotopy theory, a theoretical treatment of proper homotopy theory, including the known proper homotopy groups, is provided within Baues's theory of cofibration categories.


1992 ◽  
Vol 153 (2) ◽  
pp. 201-215 ◽  
Author(s):  
R. Ayala ◽  
Eladio Domínguez Murillo ◽  
Alberto Márquez Pérez ◽  
A. Quintero

2003 ◽  
Vol 31 (12) ◽  
pp. 5995-6017 ◽  
Author(s):  
R. Ayala ◽  
M. Cárdenas ◽  
F. Muro ◽  
A. Quintero

1976 ◽  
Vol 82 (1) ◽  
pp. 59-61
Author(s):  
David A. Edwards ◽  
Harold M. Hastings

1974 ◽  
Vol 188 ◽  
pp. 105 ◽  
Author(s):  
E. M. Brown ◽  
T. W. Tucker

1998 ◽  
Vol 41 (2) ◽  
pp. 247-263 ◽  
Author(s):  
R. Ayala ◽  
A. Quintero

This paper contains some basic relations between Ganea strong category and Lusternik Schnirelmann category in proper homotopy theory. We focus our interest on the case of category 2 in order to show that ℚn is the unique open n-manifold with proper Lusternik-Schnirelmann category 2 (n ≠ 3).


Author(s):  
JOSE M. GARCÍA–CALCINES ◽  
PEDRO R. GARCÍA–DÍAZ ◽  
ANICETO MURILLO MAS

AbstractIn this article we provide sufficient conditions on a spaceXto verify Ganea conjecture with respect to exterior and proper Lusternik–Schnirelmann category. For this aim we previously develop an exterior version of the Whitehead, cellular approximation, CW-approximation and Blakers–Massey theorems within a homotopy theory of exterior CW-complexes and study their corresponding analogues and consequences in the proper setting.


1974 ◽  
Vol 188 ◽  
pp. 105-105
Author(s):  
E. M. Brown ◽  
T. W. Tucker

Sign in / Sign up

Export Citation Format

Share Document