Geometric Aspects of Convex Sets with the Radon-Nikodým Property

Author(s):  
Richard D. Bourgin
Keyword(s):  
1986 ◽  
Vol 29 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Ioannis A. Polyrakis

The study of extreme, strongly exposed points of closed, convex and bounded sets in Banach spaces has been developed especially by the interconnection of the Radon–Nikodým property with the geometry of closed, convex and bounded subsets of Banach spaces [5],[2] . In the theory of ordered Banach spaces as well as in the Choquet theory, [4], we are interested in the study of a special type of convex sets, not necessarily bounded, namely the bases for the positive cone. In [7] the geometry (extreme points, dentability) of closed and convex subsets K of a Banach space X with the Radon-Nikodým property is studied and special emphasis has been given to the case where K is a base for acone P of X. In [6, Theorem 1], it is proved that an infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to l1 if, and only if, X has the Krein–Milman property and its positive cone has a bounded base.


Author(s):  
Neng-Yu Zhang ◽  
Bruce F. McEwen ◽  
Joachim Frank

Reconstructions of asymmetric objects computed by electron tomography are distorted due to the absence of information, usually in an angular range from 60 to 90°, which produces a “missing wedge” in Fourier space. These distortions often interfere with the interpretation of results and thus limit biological ultrastructural information which can be obtained. We have attempted to use the Method of Projections Onto Convex Sets (POCS) for restoring the missing information. In POCS, use is made of the fact that known constraints such as positivity, spatial boundedness or an upper energy bound define convex sets in function space. Enforcement of such constraints takes place by iterating a sequence of function-space projections, starting from the original reconstruction, onto the convex sets, until a function in the intersection of all sets is found. First applications of this technique in the field of electron microscopy have been promising.To test POCS on experimental data, we have artificially reduced the range of an existing projection set of a selectively stained Golgi apparatus from ±60° to ±50°, and computed the reconstruction from the reduced set (51 projections). The specimen was prepared from a bull frog spinal ganglion as described by Lindsey and Ellisman and imaged in the high-voltage electron microscope.


Author(s):  
Bernhard M¨uhlherr ◽  
Holger P. Petersson ◽  
Richard M. Weiss

This chapter presents some results about groups generated by reflections and the standard metric on a Bruhat-Tits building. It begins with definitions relating to an affine subspace, an affine hyperplane, an affine span, an affine map, and an affine transformation. It then considers a notation stating that the convex closure of a subset a of X is the intersection of all convex sets containing a and another notation that denotes by AGL(X) the group of all affine transformations of X and by Trans(X) the set of all translations of X. It also describes Euclidean spaces and assumes that the real vector space X is of finite dimension n and that d is a Euclidean metric on X. Finally, it discusses Euclidean representations and the standard metric.


Sign in / Sign up

Export Citation Format

Share Document