Parameter dependence of the Lyapunov exponent for linear stochastic systems. A survey

Author(s):  
Volker Wihstutz
2002 ◽  
Vol 02 (02) ◽  
pp. 281-294
Author(s):  
G. N. MILSTEIN

The asymptotic behavior of semi-invariants of the random variable ln |X(t,x)|, where X(t,x) is a solution of a linear system of stochastic differential equations, is connected with the moment Lyapunov exponent g(p). Namely, it is obtained that the nth semi-invariant is asymptotically proportional to the time t with the coefficient of proportionality g(n)(0). The proof is based on the concept of analytic characteristic functions. It is also shown that the asymptotic behavior of the analytic characteristic function of ln |X(t,x)| in a neighborhood of the origin of the complex plane is controlled by the extension g(iz) of g(p).


2011 ◽  
Vol 2011 ◽  
pp. 1-8
Author(s):  
Li Longsuo

The effect of random phase for Duffing-Holmes equation is investigated. We show that as the intensity of random noise properly increases the chaotic dynamical behavior will be suppressed by the criterion of top Lyapunov exponent, which is computed based on the Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. Then, the obtained results are further verified by the Poincaré map analysis, phase plot, and time evolution on dynamical behavior of the system, such as stability, bifurcation, and chaos. Thus excellent agrement between these results is found.


2009 ◽  
Vol 20 (10) ◽  
pp. 1633-1643 ◽  
Author(s):  
KAI LEUNG YUNG ◽  
YOUMING LEI ◽  
YAN XU

A weak harmonic parametric excitation with random phase has been introduced to tame chaotic arrays. It has been shown that when the amplitude of random phase properly increases, two different kinds of chaotic arrays, unsynchronized and synchronized, can be controlled by the criterion of top Lyapunov exponent. The Lyapunov exponent was computed based on Khasminskii's formulation and the extension of Wedig's algorithm for linear stochastic systems. In particular, it was found that with stronger coupling the synchronized chaotic arrays are more controllable than the unsynchronized ones. The bifurcation analysis, the spatiotemporal evolution, and the Poincaré map were carried out to confirm the results of the top Lyapunov exponent on the dynamical behavior of control stability. Excellent agreement was found between these results.


Sign in / Sign up

Export Citation Format

Share Document