Asymptotic behaviour of stochastic flows of diffeomorphisms

Author(s):  
Peter H. Baxendale
2002 ◽  
Vol 02 (01) ◽  
pp. 93-107 ◽  
Author(s):  
PAULO R. C. RUFFINO

We provide geometrical conditions on the manifold for the existence of the Liao's factorization of stochastic flows [10]. If M is simply connected and has constant curvature, then this decomposition holds for any stochastic flow, conversely, if every flow on M has this decomposition, then M has constant curvature. Under certain conditions, it is possible to go further on the factorization: φt = ξt°Ψt° Θt, where ξt and Ψt have the same properties of Liao's decomposition and (ξt°Ψt) are affine transformations on M. We study the asymptotic behaviour of the isometric component ξt via rotation matrix, providing a Furstenberg–Khasminskii formula for this skew-symmetric matrix.


1987 ◽  
Author(s):  
Richard F. Serfozo

1990 ◽  
Vol 27 (03) ◽  
pp. 545-556 ◽  
Author(s):  
S. Kalpazidou

The asymptotic behaviour of the sequence (𝒞 n (ω), wc,n (ω)/n), is studied where 𝒞 n (ω) is the class of all cycles c occurring along the trajectory ωof a recurrent strictly stationary Markov chain (ξ n ) until time n and wc,n (ω) is the number of occurrences of the cycle c until time n. The previous sequence of sample weighted classes converges almost surely to a class of directed weighted cycles (𝒞∞, ω c ) which represents uniquely the chain (ξ n ) as a circuit chain, and ω c is given a probabilistic interpretation.


Author(s):  
Bernd Carl

SynopsisIn this paper we determine the asymptotic behaviour of entropy numbers of embedding maps between Besov sequence spaces and Besov function spaces. The results extend those of M. Š. Birman, M. Z. Solomjak and H. Triebel originally formulated in the language of ε-entropy. It turns out that the characterization of embedding maps between Besov spaces by entropy numbers can be reduced to the characterization of certain diagonal operators by their entropy numbers.Finally, the entropy numbers are applied to the study of eigenvalues of operators acting on a Banach space which admit a factorization through embedding maps between Besov spaces.The statements of this paper are obtained by results recently proved elsewhere by the author.


Sign in / Sign up

Export Citation Format

Share Document