An embedding condition for subgroups of infinite groups

1987 ◽  
pp. 176-179
Author(s):  
John S. Wilson

New Astronomy ◽  
2021 ◽  
pp. 101583
Author(s):  
Satyanarayana Gedela ◽  
Ravindra K. Bisht ◽  
Neeraj Pant ◽  
Jaya Upreti ◽  
R.P. Pant


1969 ◽  
Vol 10 (1-2) ◽  
pp. 162-168 ◽  
Author(s):  
Vlastimil Dlab ◽  
B. H. Neumann

Large finite groups have large automorphism groups [4]; infinite groups may, like the infinite cyclic group, have finite automorphism groups, but their endomorphism semigroups are infinite (see Baer [1, p. 530] or [2, p. 68]). We show in this paper that the corresponding propositions for semigroups are false.



1990 ◽  
Vol 30 (3) ◽  
pp. 155-170
Author(s):  
Jörg Brendle


1982 ◽  
Vol 33 (3) ◽  
pp. 313-316
Author(s):  
L. A. Kurdachenko ◽  
N. F. Kuzennyi ◽  
V. V. Pylaev


1937 ◽  
Vol s1-12 (2) ◽  
pp. 120-127 ◽  
Author(s):  
B. H. Neumann
Keyword(s):  


2012 ◽  
Vol 40 (12) ◽  
pp. 4627-4638 ◽  
Author(s):  
Kıvanç Ersoy
Keyword(s):  


Author(s):  
Costantino Delizia ◽  
Chiara Nicotera

AbstractThe structure of locally soluble periodic groups in which every abelian subgroup is locally cyclic was described over 20 years ago. We complete the aforementioned characterization by dealing with the non-periodic case. We also describe the structure of locally finite groups in which all abelian subgroups are locally cyclic.



2018 ◽  
Vol 13 (5) ◽  
pp. 1169-1178
Author(s):  
Huaquan Wei ◽  
Qiao Dai ◽  
Hualian Zhang ◽  
Yubo Lv ◽  
Liying Yang


2004 ◽  
Vol 108 (1) ◽  
pp. 155-158
Author(s):  
Peter Brooksbank ◽  
Hongxun Qin ◽  
Edmund Robertson ◽  
Ákos Seress
Keyword(s):  


1976 ◽  
Vol 15 (6) ◽  
pp. 412-424 ◽  
Author(s):  
S. N. Chernikov


Sign in / Sign up

Export Citation Format

Share Document