On c#-normal subgroups infinite groups

2018 ◽  
Vol 13 (5) ◽  
pp. 1169-1178
Author(s):  
Huaquan Wei ◽  
Qiao Dai ◽  
Hualian Zhang ◽  
Yubo Lv ◽  
Liying Yang
1981 ◽  
Vol 24 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Narain Gupta

The purpose of this expository article is to familiarize the reader with one of the fundamental problems in the theory of infinite groups. We give an up-to-date account of the so-called Fox problem which concerns the identification of certain normal subgroups of free groups arising out of certain ideals in the free group rings. We assume that the reader is familiar with the elementary concepts of algebra.


Author(s):  
DANIEL ALLCOCK

We generalize a theorem of R. Thomas, which sometimes allows one to tell by inspection that a finitely presented group G is infinite. Groups to which his theorem applies have presentations with not too many more relators than generators, with at least some of the relators being proper powers. Our generalization provides lower bounds for the ranks of the abelianizations of certain normal subgroups of G in terms of their indices. We derive Thomas's theorem as a special case.


Author(s):  
Matt Clay ◽  
Dan Margalit

This chapter considers the notion of a group in mathematics. It begins with a discussion of the problem of determining the symmetry of an object such as a planar shape, a higher-dimensional solid, a group, or an electric field. It then describes every group as a group of symmetries of some object and shows what it means for a group to be a group of symmetries of an object. These ideas are at the very heart of geometric group theory, the study of groups, spaces, and the interactions between them. The chapter also examines infinite groups, homomorphisms and normal subgroups, and group presentations. A number of exercises are included.


2019 ◽  
Vol 169 (2) ◽  
pp. 411-432
Author(s):  
PIERRE–EMMANUEL CAPRACE ◽  
PETER H. KROPHOLLER ◽  
COLIN D. REID ◽  
PHILLIP WESOLEK

AbstractThe residual closure of a subgroup H of a group G is the intersection of all virtually normal subgroups of G containing H. We show that if G is generated by finitely many cosets of H and if H is commensurated, then the residual closure of H in G is virtually normal. This implies that separable commensurated subgroups of finitely generated groups are virtually normal. A stream of applications to separable subgroups, polycyclic groups, residually finite groups, groups acting on trees, lattices in products of trees and just-infinite groups then flows from this main result.


2020 ◽  
Vol 23 (4) ◽  
pp. 593-605
Author(s):  
Kai-Uwe Bux ◽  
Cora Welsch

AbstractWe consider the coset poset associated with the families of proper subgroups, proper subgroups of finite index and proper normal subgroups of finite index. We investigate under which conditions those coset posets have contractible geometric realizations.


1995 ◽  
Vol 171 (1) ◽  
pp. 189-203 ◽  
Author(s):  
A. Ballesterbolinches ◽  
K. Doerk ◽  
M.D. Perezramos

2011 ◽  
Vol 31 (6) ◽  
pp. 1835-1847 ◽  
Author(s):  
PAUL A. SCHWEITZER, S. J.

AbstractWe determine all the normal subgroups of the group of Cr diffeomorphisms of ℝn, 1≤r≤∞, except when r=n+1 or n=4, and also of the group of homeomorphisms of ℝn ( r=0). We also study the group A0 of diffeomorphisms of an open manifold M that are isotopic to the identity. If M is the interior of a compact manifold with non-empty boundary, then the quotient of A0 by the normal subgroup of diffeomorphisms that coincide with the identity near to a given end e of M is simple.


Sign in / Sign up

Export Citation Format

Share Document