Quasiregular mappings and value distribution

Author(s):  
P. Mattila ◽  
S. Rickman
2016 ◽  
Vol 46 (2) ◽  
pp. 33-44
Author(s):  
Pulak Sahoo ◽  
Gurudas Biswas

Author(s):  
Tomasz Adamowicz ◽  
María J. González

AbstractWe define Hardy spaces $${\mathcal {H}}^p$$ H p for quasiregular mappings in the plane, and show that for a particular class of these mappings many of the classical properties that hold in the classical setting of analytic mappings still hold. This particular class of quasiregular mappings can be characterised in terms of composition operators when the symbol is quasiconformal. Relations between Carleson measures and Hardy spaces play an important role in the discussion. This program was initiated and developed for Hardy spaces of quasiconformal mappings by Astala and Koskela in 2011 in their paper $${\mathcal {H}}^p$$ H p -theory for Quasiconformal Mappings (Pure Appl Math Q 7(1):19–50, 2011).


2008 ◽  
Vol 192 ◽  
pp. 27-58 ◽  
Author(s):  
Masaki Tsukamoto

AbstractA Brody curve is a holomorphic map from the complex plane ℂ to a Hermitian manifold with bounded derivative. In this paper we study the value distribution of Brody curves from the viewpoint of moduli theory. The moduli space of Brody curves becomes infinite dimensional in general, and we study its “mean dimension”. We introduce the notion of “mean energy” and show that this can be used to estimate the mean dimension.


2012 ◽  
Vol 2012 ◽  
pp. 1-11
Author(s):  
Jianming Qi ◽  
Jie Ding ◽  
Wenjun Yuan

We study the value distribution of a special class difference polynomial about finite order meromorphic function. Our methods of the proof are also different from ones in the previous results by Chen (2011), Liu and Laine (2010), and Liu and Yang (2009).


Sign in / Sign up

Export Citation Format

Share Document