life cycle cost
Recently Published Documents


TOTAL DOCUMENTS

3008
(FIVE YEARS 862)

H-INDEX

57
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Arash Rayegani ◽  
Gholamreza Nouri

Abstract The possibility of pounding on isolated structures with surrounding moat walls is one of the concerns in the design of isolation systems, especially in pulse-type near-field earthquakes. This paper puts forward the seismic probability assessment of structures equipped with passive and smart hybrid isolation systems by considering pounding possibilities. This investigation is performed on isolated structures equipped with a high damper rubber bearing (HDRB) considering stiff moat walls around the structure. In the Hybrid isolation system, magnetorheological dampers (MR) are considered an adaptive dissipation energy device along with isolators using an optimized novel interval Type-2 fuzzy logic controller with adaptive red-zone function (IT2FS+RZF) to reduce pounding possibilities. The fragility curves of the building for various cases are determined using IDA analysis, and possible damage costs are evaluated by using exceedance probability in each damage level. This study concludes that the collapse probability of the isolated structures with restrains at the code-based distance is over the acceptable limit of ASCE 7-22. The smart additional damping system with the proposed controller reduces the possible damage cost of the building by about 64% compared to the uncontrolled system and puts the collapse probability of the structure in the acceptable range.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 541
Author(s):  
Alessandra Perna ◽  
Mariagiovanna Minutillo ◽  
Simona Di Micco ◽  
Elio Jannelli

In this study, the authors present a techno-economic assessment of on-site hydrogen refuelling stations (450 kg/day of H2) based on different hydrogen sources and production technologies. Green ammonia, biogas, and water have been considered as hydrogen sources while cracking, autothermal reforming, and electrolysis have been selected as the hydrogen production technologies. The electric energy requirements of the hydrogen refuelling stations (HRSs) are internally satisfied using the fuel cell technology as power units for ammonia and biogas-based configurations and the PV grid-connected power plant for the water-based one. The hydrogen purification, where necessary, is performed by means of a Palladium-based membrane unit. Finally, the same hydrogen compression, storage, and distribution section are considered for all configurations. The sizing and the energy analysis of the proposed configurations have been carried out by simulation models adequately developed. Moreover, the economic feasibility has been performed by applying the life cycle cost analysis. The ammonia-based configurations are the best solutions in terms of hydrogen production energy efficiency (>71%, LHV) as well as from the economic point of view, showing a levelized cost of hydrogen (LCOH) in the range of 6.28 EUR/kg to 6.89 EUR/kg, a profitability index greater than 3.5, and a Discounted Pay Back Time less than five years.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yahong Dong ◽  
Yating Zhao ◽  
Hong Wang ◽  
Peng Liu ◽  
Yan He ◽  
...  

AbstractRubber hoses are a category of rubber products that are widely and intensively employed in construction sites for concrete conveying. There has been lack of study to investigate the life cycle environmental and economic impacts of the rubber hoses as an industrial product. In this study, we analyze four types of rubber hoses with the inner layer made of different rubber composites to resist abrasion, i.e., Baseline, S-I, S-II and S-III. Tests of the wear resistance are carried out in the laboratory and S-III shows high abrasion resisting performance with the concrete conveying volume up to 20,000 m3 during the service life. Life cycle assessment (LCA) and life cycle costing (LCC) models are established for evaluating the four types of rubber hoses. A target function is developed to integrate LCA and LCC by converting the LCA results to the environmental costs. It is found that S-III can save 13% total cost comparing to Baseline. The production stage is the largest contributor to the environmental single score, while the use stage is the largest contributor to the life cycle cost. Sensitivity analyses are conducted and the results of this study are validated with the previous studies. The integrated method of LCA and LCC developed in this study paves a way for the eco-design of industrial rubber hoses and is potentially applicable to other rubber products.


Facilities ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kwok Wai Mui ◽  
Ling Tim Wong ◽  
Tsz-Wun Tsang ◽  
Yin Hei Chiu ◽  
Kai-Wing Lai

Purpose This study aims to evaluate the generation of food waste in a university and the handling efficiency of an automatic waste collection system. Design/methodology/approach The quantity of food waste generated and collected from a university canteen was surveyed. The food waste handling efficiencies using manual collection strategy and automated food waste collection system were determined by the density of food waste. Life-cycle costing analysis was done to evaluate the economic impacts of various food waste collection methods. Findings As compared with the manual collection approach, the automatic system can improve the food waste handling efficiency by 30% (from 0.01 to 0.007 bin kg−1) and reduce the water use by 20% (from 0.512 to 0.406 L kg−1); however, it also consumes 4.4 times more energy (from 0.005 to 0.027 kWh kg−1). Under ideal system operation, the 10-year cost of food waste collection was significantly reduced from $3.45 kg−1 in the manual collection to $1.79 kg−1, and the payback period of the system collection was 1.9 years without discount. Practical implications The outcomes of this study show that an automatic food waste collection system is feasible, and it is recommended for small- and medium-sized catering facilities (e.g. canteens and food courts) to improve food waste handling efficiency. This study also provides useful reference data of automatic food waste collection systems for planning food waste management programs for catering facilities. Originality/value To the best of the authors’ knowledge, this is the first study to evaluate the waste handling efficiency, operational expenditure and life-cycle cost of a small-scale automatic food waste collection system.


Author(s):  
Diean Oktavian Regar ◽  
Aqli Mursadin

PT Adaro Indonesia is trying to adjust a vertical clearance under Tabalong Bridge 1 (unloaded) and Tabalong Bridge 2 (loaded) because the existing conditions still apply a minimum vertical clearance of 4 m. I t should be in accordance with latest Regulation of the Minister of Public Works No. 19/PRT/M/2011 that for vertical clearance above national road at least 5.1 m. This specification has not been met by the national road under the Tabalong 1 & 2 Bridges bec ause both bridges were built in the 90s. Therefore we need an engineering technique to overcome this. There are 2 alternative designs, namely lowering the elevation of the national road and increasing the elevation of the bridge's upper structure to mitiga te oversized vehicles so as not to hit the lower structure of the Tabalong bridge. In determining the selection of the best alternative designs in this research is based on two (2) things, non financial criteria with Analytical Hierarchy Process (AHP) and financial criteria with Life Cycle Cost Analysis (LCCA)/Benefit Cost Ratio (BCR) method. This study uses a survey method by distributing questionnaires and interviews as a means of collecting primary data. In addition, previous research and consultant DED documents were used as a means of collecting secondary data. The AHP method is used to process primary data to produce a decision from a non financial aspect. While the LCC/BCR method is used to process secondary data to produce a decision from the financi al aspect . The results of the AHP analysis obtained that the synthesis value of the decision the option of lowering national roads was 85% and the bridge lifting option was 15% and the consistency ratio (CR) was 0.05 < 0.1. The consistency ratio below 0.1 shows that the questionnaire data from the respondents are consistent. The results of the analysis of Life Cycle Cost (LCC) obtained the option of lowering national roads where the LCC value is Rp. 44,877,651,669.27 more economical than the bridge lifting option. Then the results of the Benefit Cost Ratio (BCR) analysis obtained the option of lowering national roads with a BCR value of 2.33 > 1 and NPV = Rp. 43,442,264,804.34 > 1 means that the option lowering national roads is feasible. While the bridge li fting option is obtained by analyzing the value of BCR = 0.98 < 1 and NPV = option is not feasible to implement.


Author(s):  
Alina Galimshina ◽  
Maliki Moustapha ◽  
Alexander Hollberg ◽  
Guy Wagner ◽  
Pierryves Padey ◽  
...  

Renovation of the building stock in Europe is urgent to decrease the environmental impact from the building sector and meet the United Nations climate action goals. However, it is often hard to define a robust scenario for a renovation due to numerous uncertainties, which occur during the production, operation and end-of-life stage. One can cite the loss of performance of insulation and heating systems, the replacement time of installation or the future energy prices as well as the future climate. The replacement of oil boilers with heat pumps has shown a good performance regarding costs and greenhouse gas emissions. However, due to the flow and return temperature differences, often the current heat distribution system needs to be replaced as well, which is normally done with conventional radiators or floor heating. In this paper, we analyse a new possibility of a heat distribution system with earth plastered wall. We develop a methodology on the integrated assessment of life cycle assessment (LCA) and life cycle cost analysis (LCCA) for the renovation scenarios and adapt the analysis of the heat pump renovation solution with conventional radiators system and the earth plastered wall for two typical residential buildings located in Switzerland. Through rigorous statistical treatment, we then propagate the possible sources of uncertainty and perform the uncertainty quantification using polynomial chaos expansion to compare the distributions of two outcomes. The results show that the solution with the earth plaster has lower overall environmental impacts and costs. It has also been noticed that the solution with the earth plaster is more robust in investment cost and embodied emissions compared to the solution with the conventional radiators.


2022 ◽  
Vol 14 (1) ◽  
pp. 549
Author(s):  
Erdem Küçüktopcu ◽  
Bilal Cemek ◽  
Halis Simsek

This study aimed to determine the effect of optimum pipe insulation thickness on energy savings and air pollution under greenhouse conditions. In this regard, an optimization model based on a Life Cycle Cost (LCC) analysis was carried out using the P1–P2 method. Three fuel types, coal, natural gas, and fuel oil, were tested with nominal pipe sizes ranging from 25 to 65 mm, and hot water was used in the system. Our findings showed that the highest insulation thickness (0.807 m), the greatest energy savings ($62.351/m), and the lowest payback period (0.502 years) were achieved with a 65 mm pipe size for fuel oil. Overall, the insulation minimizes heat loss through the heating pipelines, resulting in economic and environmental benefits. Fuel oil was determined as the best option for savings in this study. Hence, for fuel oil utilization, the emissions of CO2 varied from 2.762 to 3.798 kg/m and SO2 from 0.014 to 0.020 kg/m for pipe thicknesses ranging from 25 and 65 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document