Pseudographic realizations of an infinitary degree sequence

Author(s):  
R. B. Eggleton ◽  
D. A. Holton
Keyword(s):  
Author(s):  
Mark Newman

A discussion of the most fundamental of network models, the configuration model, which is a random graph model of a network with a specified degree sequence. Following a definition of the model a number of basic properties are derived, including the probability of an edge, the expected number of multiedges, the excess degree distribution, the friendship paradox, and the clustering coefficient. This is followed by derivations of some more advanced properties including the condition for the existence of a giant component, the size of the giant component, the average size of a small component, and the expected diameter. Generating function methods for network models are also introduced and used to perform some more advanced calculations, such as the calculation of the distribution of the number of second neighbors of a node and the complete distribution of sizes of small components. The chapter ends with a brief discussion of extensions of the configuration model to directed networks, bipartite networks, networks with degree correlations, networks with high clustering, and networks with community structure, among other possibilities.


2005 ◽  
Vol 15 (1B) ◽  
pp. 652-670 ◽  
Author(s):  
Richard Arratia ◽  
Thomas M. Liggett
Keyword(s):  

2011 ◽  
Vol 21 (4) ◽  
pp. 1400-1435 ◽  
Author(s):  
Sourav Chatterjee ◽  
Persi Diaconis ◽  
Allan Sly

10.37236/3414 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Sarah Behrens ◽  
Catherine Erbes ◽  
Michael Ferrara ◽  
Stephen G. Hartke ◽  
Benjamin Reiniger ◽  
...  

A sequence of nonnegative integers is $k$-graphic if it is the degree sequence of a $k$-uniform hypergraph. The only known characterization of $k$-graphic sequences is due to Dewdney in 1975. As this characterization does not yield an efficient algorithm, it is a fundamental open question to determine a more practical characterization. While several necessary conditions appear in the literature, there are few conditions that imply a sequence is $k$-graphic. In light of this, we present sharp sufficient conditions for $k$-graphicality based on a sequence's length and degree sum.Kocay and Li gave a family of edge exchanges (an extension of 2-switches) that could be used to transform one realization of a 3-graphic sequence into any other realization. We extend their result to $k$-graphic sequences for all $k \geq 3$. Finally we give several applications of edge exchanges in hypergraphs, including generalizing a result of Busch et al. on packing graphic sequences.


10.37236/1525 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
Yair Caro ◽  
Raphael Yuster

For a graph $G$ whose degree sequence is $d_{1},\ldots ,d_{n}$, and for a positive integer $p$, let $e_{p}(G)=\sum_{i=1}^{n}d_{i}^{p}$. For a fixed graph $H$, let $t_{p}(n,H)$ denote the maximum value of $e_{p}(G)$ taken over all graphs with $n$ vertices that do not contain $H$ as a subgraph. Clearly, $t_{1}(n,H)$ is twice the Turán number of $H$. In this paper we consider the case $p>1$. For some graphs $H$ we obtain exact results, for some others we can obtain asymptotically tight upper and lower bounds, and many interesting cases remain open.


10.37236/3606 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Petteri Kaski ◽  
André de Souza Medeiros ◽  
Patric R.J. Östergård ◽  
Ian M. Wanless

We define two types of switchings between one-factorisations of complete graphs, called factor-switching and vertex-switching. For each switching operation and for each $n\le 12$, we build a switching graph that records the transformations between isomorphism classes of one-factorisations of $K_{n}$.  We establish various parameters of our switching graphs, including order, size, degree sequence, clique number and the radius of each component.As well as computing data for $n\le12$, we demonstrate several properties that hold for one-factorisations of $K_{n}$ for general $n$. We show that such factorisations have a parity which is not changed by factor-switching, and this leads to disconnected switching graphs. We also characterise the isolated vertices that arise from an absence of switchings. For factor-switching the isolated vertices are perfect one-factorisations, while for vertex-switching the isolated vertices are closely related to atomic Latin squares.


Sign in / Sign up

Export Citation Format

Share Document