Some remarks on Brauer groups of Krull domains

Author(s):  
M. Orzech ◽  
A. Verschoren
Keyword(s):  
1982 ◽  
Vol 34 (4) ◽  
pp. 996-1010 ◽  
Author(s):  
Heisook Lee ◽  
Morris Orzech

In a previous paper [13] one of us considered Brauer groups Br(C) and class groups Cl(C) attached to certain monoidal categories C of divisorial R-lattices. That paper showed that the groups arising for a suitable pair of categories C1 ⊆ C2 could be related by a tidy exact sequenceIt was shown that this exact sequence specializes to a number of exact sequences which had formerly been handled separately. At the same time the conventional setting of noetherian normal domains was replaced by that of Krull domains, thus generalizing previous results while also simplifying the proofs. This work was carried out in an affine setting, and one aim of the present paper is to carry these results over to Krull schemes. This will enable us to recover the non-affine version of an exact sequence obtained by Auslander [1, p. 261], as well as to introduce a new, non-affine version of a different sequence derived by the same author [2, Theorem 1].


1982 ◽  
Vol 34 (1) ◽  
pp. 196-215 ◽  
Author(s):  
D. D. Anderson ◽  
David F. Anderson

Let R = ⊕α∊гRα be an integral domain graded by an arbitrary torsionless grading monoid Γ. In this paper we consider to what extent conditions on the homogeneous elements or ideals of R carry over to all elements or ideals of R. For example, in Section 3 we show that if each pair of nonzero homogeneous elements of R has a GCD, then R is a GCD-domain. This paper originated with the question of when a graded UFD (every homogeneous element is a product of principal primes) is a UFD. If R is Z+ or Z-graded, it is known that a graded UFD is actually a UFD, while in general this is not the case. In Section 3 we consider graded GCD-domains, in Section 4 graded UFD's, in Section 5 graded Krull domains, and in Section 6 graded π-domains.


Author(s):  
Gyu Whan Chang

AbstractLet D be an integrally closed domain, $$\{V_{\alpha }\}$$ { V α } be the set of t-linked valuation overrings of D, and $$v_c$$ v c be the star operation on D defined by $$I^{v_c} = \bigcap _{\alpha } IV_{\alpha }$$ I v c = ⋂ α I V α for all nonzero fractional ideals I of D. In this paper, among other things, we prove that D is a $$v_c$$ v c -Noetherian domain if and only if D is a Krull domain, if and only if $$v_c = v$$ v c = v and every prime t-ideal of D is a maximal t-ideal. As a corollary, we have that if D is one-dimensional, then $$v_c = v$$ v c = v if and only if D is a Dedekind domain.


2014 ◽  
Vol 18 (2) ◽  
pp. 1149-1244 ◽  
Author(s):  
Benjamin Antieau ◽  
David Gepner

1994 ◽  
Vol 96 (2) ◽  
pp. 97-112 ◽  
Author(s):  
David F. Anderson ◽  
Scott T. Chapman ◽  
William W. Smith

1984 ◽  
Vol 33 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Timothy J. Ford
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document