scholarly journals $$v_c$$-Noetherian domains and Krull domains

Author(s):  
Gyu Whan Chang

AbstractLet D be an integrally closed domain, $$\{V_{\alpha }\}$$ { V α } be the set of t-linked valuation overrings of D, and $$v_c$$ v c be the star operation on D defined by $$I^{v_c} = \bigcap _{\alpha } IV_{\alpha }$$ I v c = ⋂ α I V α for all nonzero fractional ideals I of D. In this paper, among other things, we prove that D is a $$v_c$$ v c -Noetherian domain if and only if D is a Krull domain, if and only if $$v_c = v$$ v c = v and every prime t-ideal of D is a maximal t-ideal. As a corollary, we have that if D is one-dimensional, then $$v_c = v$$ v c = v if and only if D is a Dedekind domain.

2003 ◽  
Vol 46 (1) ◽  
pp. 3-13 ◽  
Author(s):  
D. D. Anderson ◽  
Tiberiu Dumitrescu

AbstractAn integral domain D with identity is condensed (resp., strongly condensed) if for each pair of ideals I, J of D, IJ = {ij ; i ∈ I; j ∈ J} (resp., IJ = iJ for some i ∈ I or IJ = Ij for some j ∈ J). We show that for a Noetherian domain D, D is condensed if and only if Pic(D) = 0 and D is locally condensed, while a local domain is strongly condensed if and only if it has the two-generator property. An integrally closed domain D is strongly condensed if and only if D is a Bézout generalized Dedekind domain with at most one maximal ideal of height greater than one. We give a number of equivalencies for a local domain with finite integral closure to be strongly condensed. Finally, we show that for a field extension k ⊆ K, the domain D = k + XK[[X]] is condensed if and only if [K : k] ≤ 2 or [K : k] = 3 and each degree-two polynomial in k[X] splits over k, while D is strongly condensed if and only if [K : k] ≤ 2.


2012 ◽  
Vol 12 (02) ◽  
pp. 1250147 ◽  
Author(s):  
GYU WHAN CHANG ◽  
DONG YEOL OH

Let D be an integral domain, [Formula: see text] be an infinite set of indeterminates over D, and [Formula: see text] be the i th type of power series ring over D for i = 1, 2, 3. For [Formula: see text], let c(f) denote the ideal of D generated by the coefficients of f. For a star operation * on D, put [Formula: see text], where *f is the star operation of finite type on D induced by *. Let [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. We show that [Formula: see text], and that D is a Noetherian domain if and only if [Formula: see text] is a Noetherian domain. We also show that D is a Krull domain if and only if [Formula: see text] is a Dedekind domain, if and only if [Formula: see text] is a Prüfer domain, and that D is a Dedekind domain if and only if [Formula: see text] is a Dedekind domain, if and only if [Formula: see text] is a Prüfer domain.


1994 ◽  
Vol 37 (2) ◽  
pp. 162-164 ◽  
Author(s):  
Huah Chu ◽  
Yi-Chuan Lang

AbstractLet R be an integral domain with quotient field K. If R has an overling S ≠ K, such that S[X] is integrally closed, then the "algebraic degree" of K((X)) over the quotient field of R[X] is infinite. In particular, it holds for completely integrally closed domain or Noetherian domain R.


2020 ◽  
Vol 27 (02) ◽  
pp. 287-298
Author(s):  
Gyu Whan Chang ◽  
HwanKoo Kim

Let D be an integral domain with quotient field K, [Formula: see text] be the integral closure of D in K, and D[w] be the w-integral closure of D in K; so [Formula: see text], and equality holds when D is Noetherian or dim(D) = 1. The Mori–Nagata theorem states that if D is Noetherian, then [Formula: see text] is a Krull domain; it has also been investigated when [Formula: see text] is a Dedekind domain. We study integral domains D such that D[w] is a Krull domain. We also provide an example of an integral domain D such that [Formula: see text], t-dim(D) = 1, [Formula: see text] is a Prüfer v-multiplication domain with t-dim([Formula: see text]) = 2, and D[w] is a UFD.


1969 ◽  
Vol 21 ◽  
pp. 558-563 ◽  
Author(s):  
Jimmy T. Arnold

Let D be an integrally closed domain with identity having quotient field L. If {Vα} is the set of valuation overrings of D and if A is an ideal of D, then à = ∪ αAVα is an ideal of D called the completion of A. If X is an indeterminate over D and f ∈ D[X], then we denote by Af the ideal of D generated by the coefficients of f. The Kronecker function ring DK of D is defined by DK = {f/g| f, g ∈ D[X], Ãf ⊆ Ag} (4, p. 558); and the domain D(X) is defined by D(X) = {f/g| f, g ∈ D[X], Ag = D} (5, p. 17). In this paper we wish to relate the ideal theory of D to that of DK and D(X) for the case in which D is a Prüfer domain, a Dedekind domain, or an almost Dedekind domain.


2009 ◽  
Vol 19 (03) ◽  
pp. 287-303 ◽  
Author(s):  
ISABEL GOFFA ◽  
ERIC JESPERS ◽  
JAN OKNIŃSKI

Let A be a finitely generated commutative algebra over a field K with a presentation A = K 〈X1,…, Xn | R〉, where R is a set of monomial relations in the generators X1,…, Xn. So A = K[S], the semigroup algebra of the monoid S = 〈X1,…, Xn | R〉. We characterize, purely in terms of the defining relations, when A is an integrally closed domain, provided R contains at most two relations. Also the class group of such algebras A is calculated.


2018 ◽  
Vol 239 ◽  
pp. 346-354
Author(s):  
AMARTYA KUMAR DUTTA ◽  
NEENA GUPTA ◽  
ANIMESH LAHIRI

In this paper, we will prove that any $\mathbb{A}^{3}$-form over a field $k$ of characteristic zero is trivial provided it has a locally nilpotent derivation satisfying certain properties. We will also show that the result of Kambayashi on the triviality of separable $\mathbb{A}^{2}$-forms over a field $k$ extends to $\mathbb{A}^{2}$-forms over any one-dimensional Noetherian domain containing $\mathbb{Q}$.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050200
Author(s):  
A. Mimouni

This paper seeks an answer to the following question: Let [Formula: see text] be a Noetherian ring with [Formula: see text]. When is every ideal isomorphic to a trace ideal? We prove that for a local Noetherian domain [Formula: see text] with [Formula: see text], every ideal is isomorphic to a trace ideal if and only if either [Formula: see text] is a DVR or [Formula: see text] is one-dimensional divisorial domain, [Formula: see text] is a principal ideal of [Formula: see text] and [Formula: see text] posses the property that every ideal of [Formula: see text] is isomorphic to a trace ideal of [Formula: see text]. Next, we globalize our result by showing that a Noetherian domain [Formula: see text] with [Formula: see text] has every ideal isomorphic to a trace ideal if and only if either [Formula: see text] is a PID or [Formula: see text] is one-dimensional divisorial domain, every invertible ideal of [Formula: see text] is principal and for every non-invertible maximal ideal [Formula: see text] of [Formula: see text], [Formula: see text] is a principal ideal of [Formula: see text] and every ideal of [Formula: see text] is isomorphic to a trace ideal of [Formula: see text]. We close the paper by examining some classes of non-Noetherian domains with this property to provide a large family of original examples.


2003 ◽  
Vol 02 (01) ◽  
pp. 21-50 ◽  
Author(s):  
M. FONTANA ◽  
P. JARA ◽  
E. SANTOS

Starting from the notion of semistar operation, introduced in 1994 by Okabe and Matsuda [49], which generalizes the classical concept of star operation (cf. Gilmer's book [27]) and, hence, the related classical theory of ideal systems based on the works by W. Krull, E. Noether, H. Prüfer, P. Lorenzen and P. Jaffard (cf. Halter–Koch's book [32]), in this paper we outline a general approach to the theory of Prüfer ⋆-multiplication domains (or P⋆MDs), where ⋆ is a semistar operation. This approach leads to relax the classical restriction on the base domain, which is not necessarily integrally closed in the semistar case, and to determine a semistar invariant character for this important class of multiplicative domains (cf. also J. M. García, P. Jara and E. Santos [25]). We give a characterization theorem of these domains in terms of Kronecker function rings and Nagata rings associated naturally to the given semistar operation, generalizing previous results by J. Arnold and J. Brewer ]10] and B. G. Kang [39]. We prove a characterization of a P⋆MD, when ⋆ is a semistar operation, in terms of polynomials (by using the classical characterization of Prüfer domains, in terms of polynomials given by R. Gilmer and J. Hoffman [28], as a model), extending a result proved in the star case by E. Houston, S. J. Malik and J. Mott [36]. We also deal with the preservation of the P⋆MD property by ascent and descent in case of field extensions. In this context, we generalize to the P⋆MD case some classical results concerning Prüfer domains and PvMDs. In particular, we reobtain as a particular case a result due to H. Prüfer [51] and W. Krull [41] (cf. also F. Lucius [43] and F. Halter-Koch [34]). Finally, we develop several examples and applications when ⋆ is a (semi)star given explicitly (e.g. we consider the case of the standardv-, t-, b-, w-operations or the case of semistar operations associated to appropriate families of overrings).


Sign in / Sign up

Export Citation Format

Share Document