The Dirichlet Problem with L2-Boundary Data for Elliptic Linear Equations

Author(s):  
Jan Chabrowski
2006 ◽  
Vol 5 (2) ◽  
pp. 445-457 ◽  
Author(s):  
Peter Ebenfelt ◽  
Michael Viscardi

Author(s):  
Ihor Petkov ◽  
Vladimir Ryazanov

Boundary value problems for the Beltrami equations are due to the famous Riemann dissertation (1851) in the simplest case of analytic functions and to the known works of Hilbert (1904, 1924) and Poincare (1910) for the corresponding Cauchy--Riemann system. Of course, the Dirichlet problem was well studied for uniformly elliptic systems, see, e.g., \cite{Boj} and \cite{Vekua}. Moreover, the corresponding results on the Dirichlet problem for degenerate Beltrami equations in the unit disk can be found in the monograph \cite{GRSY}. In our article \cite{KPR1}, see also \cite{KPR3} and \cite{KPR5}, it was shown that each generalized homeomorphic solution of a Beltrami equation is the so-called lower $Q-$homeomorphism with its dilatation quotient as $Q$ and developed on this basis the theory of the boundary behavior of such solutions. In the next papers \cite{KPR2} and \cite{KPR4}, the latter made possible us to solve the Dirichlet problem with continuous boundary data for a wide circle of degenerate Beltrami equations in finitely connected Jordan domains, see also [\citen{KPR5}--\citen{KPR7}]. Similar problems were also investigated in the case of bounded finitely connected domains in terms of prime ends by Caratheodory in the papers [\citen{KPR9}--\citen{KPR10}] and [\citen{P1}--\citen{P2}]. Finally, in the present paper, we prove a series of effective criteria for the existence of pseudo\-re\-gu\-lar and multi-valued solutions of the Dirichlet problem for the degenerate Beltrami equations in arbitrary bounded finitely connected domains in terms of prime ends by Caratheodory.


Author(s):  
Vladimir Gutlyanskii ◽  
Vladimir Ryazanov ◽  
Eduard Yakubov

First, we study the Dirichlet problem for the Poisson equations \(\triangle u(z) = g(z)\) with \(g\in L^p\), \(p>1\), and continuous boundary data \(\varphi :\partial D\to\mathbb{R}\) in arbitrary Jordan domains \(D\) in \(\mathbb{C}\) and prove the existence of continuous solutions \(u\) of the problem in the class \(W^{2,p}_{\rm loc}\). Moreover, \(u\in W^{1,q}_{\rm loc}\) for some \(q>2\) and \(u\) is locally Hölder continuous. Furthermore, \(u\in C^{1,\alpha}_{\rm loc}\) with \(\alpha = (p-2)/p\) if \(p>2\). Then, on this basis and applying the Leray-Schauder approach, we obtain the similar results for the Dirichlet problem with continuous data in arbitrary Jordan domains to the quasilinear Poisson equations of the form \(\triangle u(z) = h(z)\cdot f(u(z))\) with the same assumptions on \(h\) as for \(g\) above and continuous functions \(f:\mathbb{R}\to\mathbb{R}\), either bounded or with nondecreasing \(|f\,|\) of \( |t\,|\) such that \(f(t)/t \to 0\) as \(t\to\infty\). We also give here applications to mathematical physics that are relevant to problems of diffusion with absorbtion, plasma and combustion. In addition, we consider the Dirichlet problem for the Poisson equations in the unit disk \(\mathbb{D}\subset\mathbb{C}\) with arbitrary boundary data \(\varphi :\partial\mathbb{D}\to\mathbb{R}\) that are measurable with respect to logarithmic capacity. Here we establish the existence of continuous nonclassical solutions \(u\) of the problem in terms of the angular limits in \(\mathbb D\) a.e. on \(\partial\mathbb D\) with respect to logarithmic capacity with the same local properties as above. Finally, we extend these results to almost smooth Jordan domains with qusihyperbolic boundary condition by Gehring-Martio.


2020 ◽  
Vol 307 (1) ◽  
pp. 1-12
Author(s):  
Arì Aiolfi ◽  
Giovanni da Silva Nunes ◽  
Lisandra Sauer ◽  
Rodrigo Soares

1987 ◽  
Vol 36 (1) ◽  
pp. 173-175
Author(s):  
Thomas Hoffmann-Walbeck

2021 ◽  
Author(s):  
Yu Min ◽  
Zhang Xuan ◽  
Li Tingqiu ◽  
Zhang Yongou

Abstract For Fluid-Structure Interaction (FSI) analysis, Radial Basis Functions (RBF) interpolation is very effective for data transfer between fluids and structures because it can avoid interface mesh mismatches that make it difficult to transfer data. However, one of the main drawbacks of conventional RBF interpolation is the computational cost associated with solving linear equations, as well as the corresponding running times. In this paper, a scheme of RBF interpolation based on the Partition of Unity Method (RBF-PUM) is proposed to handle a large amount of FSI boundary data with the aim of striking a balance between computational accuracy and efficiency. And a cross-validation technique is coupled with RBF-PUM, for the purpose of searching for the optimal value of shape parameter related to RBF interpolation. The scheme basically focuses on two parts, one of which is how to partition the fluid domain of node points into a number of subdomains or patches, and the other is how to efficiently exploit the techniques that are applied to reduce the interpolation error locally and globally. Numerical experiments show that compared to the CSRBF method and the greedy algorithm-based RBF method, RBF-PUM significantly improves the computational efficiency of the interpolation and the computational accuracy is relatively competitive.


Sign in / Sign up

Export Citation Format

Share Document