The exterior Dirichlet problem for quasi-linear elliptic equations with small boundary data

1987 ◽  
Vol 59 (1) ◽  
pp. 53-62
Author(s):  
Chi -ping Lau
Author(s):  
Gary M. Lieberman

SynopsisEstimates on the gradient of solutions to the Dirichlet problem for a semilinear elliptic equation are given when the nonlinearity in the equation is quadratic with respect to the gradient of the solution. These estimates extend results of F. Tomi to less smooth boundary data and results of the author to the full quadratic growth.


2021 ◽  
Vol 21 (2) ◽  
pp. 261-280
Author(s):  
Marie-Françoise Bidaut-Véron ◽  
Marta Garcia-Huidobro ◽  
Laurent Véron

Abstract In the present paper, we study the existence of nonnegative solutions to the Dirichlet problem ℒ p , q M ⁢ u := - Δ ⁢ u + u p - M ⁢ | ∇ ⁡ u | q = μ {{\mathcal{L}}^{{M}}_{p,q}u:=-\Delta u+u^{p}-M|\nabla u|^{q}=\mu} in a domain Ω ⊂ ℝ N {\Omega\subset\mathbb{R}^{N}} where μ is a nonnegative Radon measure, when p > 1 {p>1} , q > 1 {q>1} and M ≥ 0 {M\geq 0} . We also give conditions under which nonnegative solutions of ℒ p , q M ⁢ u = 0 {{\mathcal{L}}^{{M}}_{p,q}u=0} in Ω ∖ K {\Omega\setminus K} , where K is a compact subset of Ω, can be extended as a solution of the same equation in Ω.


2006 ◽  
Vol 5 (2) ◽  
pp. 445-457 ◽  
Author(s):  
Peter Ebenfelt ◽  
Michael Viscardi

2016 ◽  
Vol 19 (04) ◽  
pp. 1650043 ◽  
Author(s):  
Hua Chen ◽  
Shuying Tian ◽  
Yawei Wei

The present paper is concern with the Dirichlet problem for semi-linear corner degenerate elliptic equations with singular potential term. We first give the preliminary of the framework and then discuss the weighted corner type Hardy inequality. By using the variational method, we prove the existence of multiple solutions for the Dirichlet boundary-value problem.


Sign in / Sign up

Export Citation Format

Share Document